Prediction of lymphovascular invasion in breast cancer with non-mass enhancement by DCE-MRI and clinicopathological features: a retrospective case-control study

被引:0
|
作者
Guo, Shiqi [1 ,2 ]
Zhao, Kai [3 ]
Xie, Yujiao [1 ,4 ]
Li, Qingyang [1 ,2 ]
Chen, Siyi [1 ,2 ]
Sun, Jiahong [1 ,2 ]
Gao, Zhaofeng [1 ,4 ]
Zhu, Li [2 ]
Wang, Jiandong [2 ]
机构
[1] Chinese Peoples Liberat Army PLA Med Coll, Beijing, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Dept Gen Surg, Med Ctr 1, Beijing, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Beijing, Peoples R China
[4] Nankai Univ, Sch Med, Tianjin, Peoples R China
来源
LANCET REGIONAL HEALTH-WESTERN PACIFIC | 2025年 / 55卷
关键词
lymphovascular invasion; invasive breast cancer; non-mass enhancement; DCE-MRI;
D O I
10.1016/j.lanwpc.2024.101359
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Multiphases DCE-MRI Radiomics Nomogram for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer
    Ma, Qinqin
    Lu, Xingru
    Chen, Qitian
    Gong, Hengxin
    Lei, Junqiang
    ACADEMIC RADIOLOGY, 2024, 31 (12) : 4743 - 4758
  • [2] Differentiating benign and malignant mass and non-mass lesions in breast DCE-MRI using normalized frequency-based features
    Ayatollahi, Fazael
    Shokouhi, Shahriar B.
    Teuwen, Jonas
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (02) : 297 - 307
  • [3] Differentiating benign and malignant mass and non-mass lesions in breast DCE-MRI using normalized frequency-based features
    Fazael Ayatollahi
    Shahriar B. Shokouhi
    Jonas Teuwen
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 297 - 307
  • [4] Non-Mass Enhancements on DCE-MRI: Development and Validation of a Radiomics-Based Signature for Breast Cancer Diagnoses
    Li, Yan
    Yang, Zhenlu L.
    Lv, Wenzhi Z.
    Qin, Yanjin J.
    Tang, Caili L.
    Yan, Xu
    Guo, Yihao H.
    Xia, Liming M.
    Ai, Tao
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [5] Analysis of DCE-MRI Features in Tumor for Prediction of the Prognosis in Breast Cancer
    Liu, Bin
    Fan, Ming
    Zheng, Shuo
    Li, Lihua
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [6] Descriptors of Malignant Non-mass Enhancement of Breast MRI: Their Correlation to the Presence of Invasion
    Machida, Youichi
    Shimauchi, Akiko
    Tozaki, Mitsuhiro
    Kuroki, Yoshifumi
    Yoshida, Tamiko
    Fukuma, Ei'suke
    ACADEMIC RADIOLOGY, 2016, 23 (06) : 687 - 695
  • [7] Prediction of Histological Grade in Breast Cancer by Combining DCE-MRI and DWI Features
    Zhao, Wenrui
    Fan, Ming
    Xu, Maosheng
    Li, Lihua
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [8] DCE-MRI Texture Features for Early Prediction of Breast Cancer Therapy Response
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Chui, Stephen Y-C
    Naik, Arpana
    Troxell, Megan L.
    Kemmer, Kathleen A.
    Oh, Karen Y.
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan L.
    Huang, Wei
    Song, Xubo
    TOMOGRAPHY, 2017, 3 (01) : 23 - 32
  • [9] Differentiating between Benign and Malignant non-Mass Enhancing Lesions in Breast DCE-MRI by Using Curvelet-based Textural Features
    Ayatollahi, Fazael
    Eskandari, Parinaz
    Shokouhi, Shahriar B.
    2018 4TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2018, : 101 - 105
  • [10] Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer
    Fan, Ming
    Li, Hui
    Wang, Shijian
    Zheng, Bin
    Zhang, Juan
    Li, Lihua
    PLOS ONE, 2017, 12 (02):