BEAST DB: Grand-Canonical Database of Electrocatalyst Properties

被引:2
|
作者
Tezak, Cooper [1 ]
Clary, Jacob [2 ]
Gerits, Sophie [1 ]
Quinton, Joshua [3 ]
Rich, Benjamin [4 ]
Singstock, Nicholas [1 ,5 ]
Alherz, Abdulaziz [6 ]
Aubry, Taylor [2 ]
Clark, Struan [2 ]
Hurst, Rachel [2 ]
Del Ben, Mauro [7 ]
Sutton, Christopher [8 ]
Sundararaman, Ravishankar [3 ,9 ]
Musgrave, Charles [10 ,11 ,12 ]
Vigil-Fowler, Derek [2 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Natl Renewable Energy Lab, Mat Chem & Computat Sci Directorate, Golden, CO 80401 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[4] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[6] Kuwait Univ, Coll Engn & Petr, Dept Chem Engn, Safat 13060, Kuwait
[7] Lawrence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA 94720 USA
[8] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[9] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[10] Univ Colorado, Mat Sci & Engn Program, Dept Chem, Mat Sci & Engn Program, Boulder, CO 80309 USA
[11] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[12] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 47期
关键词
ELECTROCHEMICAL CO2 REDUCTION; HETEROGENEOUS CATALYSIS; ADSORPTION ENERGIES; GREENS-FUNCTION; QUASI-PARTICLE; EVOLUTION; INSIGHTS; HYDROGEN; SURFACE;
D O I
10.1021/acs.jpcc.4c06826
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present BEAST DB, an open-source database comprised of ab initio electrochemical data computed using grand-canonical density functional theory in implicit solvent at consistent calculation parameters. The database contains over 20,000 surface calculations and covers a broad set of heterogeneous catalyst materials and electrochemical reactions. Calculations were performed at self-consistent fixed potential as well as constant charge to facilitate comparisons to the computational hydrogen electrode. This article presents common use cases of the database to rationalize trends in catalyst activity, screen catalyst material spaces, understand elementary mechanistic steps, analyze the electronic structure, and train machine learning models to predict higher fidelity properties. Users can interact graphically with the database by querying for individual calculations to gain a granular understanding of reaction steps or by querying for an entire reaction pathway on a given material using an interactive reaction pathway tool. BEAST DB will be periodically updated, with planned future updates to include advanced electronic structure data, surface speciation studies, and greater reaction coverage.
引用
收藏
页码:20165 / 20176
页数:12
相关论文
共 50 条
  • [1] Titration in Canonical and Grand-Canonical Ensembles
    Bakhshandeh, Amin
    Levin, Yan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (43): : 9405 - 9411
  • [2] Grand-Canonical Optimal Transport
    Di Marino, Simone
    Lewin, Mathieu
    Nenna, Luca
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2025, 249 (01)
  • [3] GRAND-CANONICAL DISTRIBUTION AND INHOMOGENEITIES
    CHAKRABARTI, CG
    INDIAN JOURNAL OF PHYSICS, 1971, 45 (08) : 378 - +
  • [4] GRAND-CANONICAL SIMULATIONS OF POLYMERS, AND BEYOND
    FRENKEL, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 95 - PHYS
  • [5] A grand-canonical approach to the disordered Bose gas
    Christopher Gaul
    Cord A. Müller
    Applied Physics B, 2014, 117 : 775 - 784
  • [6] CANONICAL AND GRAND-CANONICAL PARTITION-FUNCTIONS AND LEVEL DENSITIES
    ROSSIGNOLI, R
    PHYSICAL REVIEW C, 1995, 51 (04) : 1772 - 1776
  • [7] Grand-Canonical simulations for the growth and the stability of nanostructures
    Schmickler, W
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A122 - A122
  • [8] MOLECULAR SIMULATION IN A PSEUDO GRAND-CANONICAL ENSEMBLE
    MEHTA, M
    KOFKE, DA
    MOLECULAR PHYSICS, 1995, 86 (01) : 139 - 147
  • [9] Atomistic learning in the electronically grand-canonical ensemble
    Xi Chen
    Muammar El Khatib
    Per Lindgren
    Adam Willard
    Andrew J. Medford
    Andrew A. Peterson
    npj Computational Materials, 9
  • [10] Atomistic learning in the electronically grand-canonical ensemble
    Chen, Xi
    El Khatib, Muammar
    Lindgren, Per
    Willard, Adam
    Medford, Andrew J.
    Peterson, Andrew A.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)