Enhancing the stability and performance of Ni-rich cathode materials through Ta doping: a combined theoretical and experimental study

被引:0
|
作者
Monsees, Frederike [1 ,2 ]
Misiewicz, Casimir [3 ]
Dalkilic, Mert [2 ]
Diddens, Diddo [4 ]
Heuer, Andreas [1 ]
机构
[1] Univ Munster, Inst Phys Chem, Munster, Germany
[2] PowerCo, Salzgitter, Germany
[3] Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden
[4] Forschungszentrum Julich, Helmholtz Inst Munster IMD 4, D-48149 Munster, Germany
关键词
TOTAL-ENERGY CALCULATIONS; ION; IMPACT; EVOLUTION; FRACTURE; DOPANTS;
D O I
10.1039/d4cp03911d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the demand for high-energy batteries to power electric vehicles continues to grow, Ni-rich cathode materials have emerged as promising candidates due to their high capacity. However, these materials are prone to rapid degradation under increased voltages, posing significant challenges for their long-term stability and safety. In this study, we investigate the effects of tantalum (Ta) doping on the performance and stability of LiNi0.80Mn0.1Co0.1O2 (NMC811) cathode materials. Using a combined theoretical and experimental approach, we employ density functional theory (DFT) and cluster expansion models to analyze the electronic structure and oxygen vacancy formation enthalpy in Ta-doped NMC811. Experimental validation is conducted using cycling and gas measurements via on-line electrochemical mass spectrometry (OEMS) on in-house synthesized cathode active materials. Both theoretical and experimental approaches show an improvement in oxygen binding due to tantalum doping, with the DFT results highlighting the impact of Ni4+ concentration on the proximity of the vacancy. Our results suggest that Ta doping inhibits the formation of oxygen vacancy-induced side phases, reducing cracking and enhancing the longevity and safety of Ni-rich cathodes.
引用
收藏
页码:834 / 843
页数:10
相关论文
共 50 条
  • [1] Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping
    Chu, Mihai
    Huang, Zhongyuan
    Zhang, Taolve
    Wang, Rui
    Shao, Tielei
    Wang, Chaoqi
    Zhu, Weiming
    He, Lunhua
    Chen, Jie
    Zhao, Wenguang
    Xiao, Yinguo
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) : 19950 - 19958
  • [2] Comprehensive study of tantalum doping on morphology, structure, and electrochemical performance of Ni-rich cathode materials
    Li, Xiang
    Ge, Wujie
    Zhang, Keke
    Peng, Gongchang
    Fu, Yuanxiang
    Ma, Xianguo
    ELECTROCHIMICA ACTA, 2022, 403
  • [3] Enhancing the Surface Stability of Ni-Rich Layered Transition Metal Oxide Cathode Materials
    Hu Jiang-Tao
    Zhang Ji-Guang
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38 (12) : 2005 - 2008
  • [4] Enhancing the Surface Stability of Ni-Rich Layered Transition Metal Oxide Cathode Materials
    HU Jiang-Tao
    ZHANG Ji-Guang
    ChineseJournalofStructuralChemistry, 2019, 38 (12) : 2005 - 2008
  • [5] Improved Electrochemical Performance of Ni-rich Cathode Materials via Al Gradient Doping
    Liu, Mao-Huang
    Jen, Chien-Wen
    Chen, Jin-Ming
    Liao, Shih-Chieh
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (05): : 4350 - 4366
  • [6] Thermal stability as well as electrochemical performance of Li-rich and Ni-rich cathode materials—a comparative study
    M. Akhilash
    P. S. Salini
    Bibin John
    N. Supriya
    S. Sujatha
    T. D. Mercy
    Ionics, 2023, 29 : 983 - 992
  • [7] Improving electrochemical characteristics of Ni-rich cathode materials by Na doping
    Hwang, Do-Young
    Lee, Seung-Hwan
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2021, 22 (06): : 615 - 619
  • [8] Thermal stability as well as electrochemical performance of Li-rich and Ni-rich cathode materials-a comparative study
    Akhilash, M.
    Salini, P. S.
    John, Bibin
    Supriya, N.
    Sujatha, S.
    Mercy, T. D.
    IONICS, 2023, 29 (03) : 983 - 992
  • [9] Enhancing Structural Stability and Electrochemical Properties of Co- Less Ni-Rich Layer Cathode Materials by Fluorine and Niobium Co Doping
    Luo, Zhongyuan
    Hu, Guorong
    Wang, Weigang
    Peng, Zhongdong
    Fang, Zijun
    Cao, Yanbing
    Huang, Jiangnan
    Du, Ke
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 10927 - 10939
  • [10] Nanowelding to improve the chemomechanical stability of the Ni-rich layered cathode materials
    Wang, Lifan
    Wang, Rui
    Wang, Jingyue
    Xu, Rui
    Wang, Xindong
    Zhan, Chun
    ACS Applied Materials and Interfaces, 2021, 13 (07): : 8324 - 8336