Electronic Metal-Support Interaction Induces Hydrogen Spillover and Platinum Utilization in Hydrogen Evolution Reaction

被引:6
|
作者
Feng, Yumei [1 ,2 ]
Xie, Yuhua [2 ]
Yu, Yingjie [1 ]
Chen, Yazhou [1 ]
Liu, Qingting [3 ]
Bao, Haifeng [1 ]
Luo, Fang [1 ,3 ]
Pan, Shuyuan [2 ]
Yang, Zehui [2 ]
机构
[1] Wuhan Text Univ, Coll Mat Sci & Engn, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
[2] China Univ Geosci Wuhan, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
[3] Hubei Univ Technol, Hubei Prov Key Lab Green Mat Light Ind, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen evolution reaction; Electronic metal-support interaction; Hydrogen spillover; Tungsten sulfides; in situ Raman spectroscopy; CATALYTIC-ACTIVITY; HIGHLY EFFICIENT; CLUSTERS; NANOSHEETS;
D O I
10.1002/anie.202413417
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The substantial promotion of hydrogen evolution reaction (HER) catalytic performance relies on the breakup of the Sabatier principle, which can be achieved by the alternation of the support and electronic metal support interaction (EMSI) is noticed. Due to the utilization of tungsten disulfides as support for platinum (Pt@WS2), surprisingly, Pt@WS2 demands only 31 mV overpotential to attain 10 mA cm-2 in acidic HER test, corresponding to a 2.5-fold higher mass activity than benchmarked Pt/C. The pH dependent electrochemical measurements associated with H2-TPD and in situ Raman spectroscopy indicate a hydrogen spillover involved HER mechanism is confirmed. The WS2 support triggers a higher hydrogen binding strength for Pt leading to the increment in hydrogen concentration at Pt sites proved by upshifted d band center as well as lower Gibbs free energy of hydrogen, favourable for hydrogen spillover. Besides, the WS2 shows a comparably lower effect on Gibbs free energy for different Pt layers (-0.50 eV layer-1) than carbon black (-0.88 eV layer-1) contributing to a better Pt utilization. Also, the theoretical calculation suggests the hydrogen spillover occurs on the 3rd Pt layer in Pt@WS2; moreover, the energy barrier is lowered with increment in hydrogen coverage on Pt. Therefore, the boosted HER activity attributes to the EMSI effect caused hydrogen spillover and enhancement in Pt utilization efficiency.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Tailored electronic interaction between metal-support trigger reverse hydrogen spillover for efficient hydrogen evolution
    Wang, Zichen
    Zhang, Jiancan
    Wei, Qiliang
    Guo, Fei
    Chen, Runzhe
    Jiang, Haoran
    Wu, Wei
    Zhu, Yu
    Chen, Suhao
    Wang, Yandong
    Lai, Feiyan
    Cheng, Niancai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 687 : 423 - 431
  • [2] Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction
    Shi, Yi
    Ma, Zhi-Rui
    Xiao, Yi-Ying
    Yin, Yun-Chao
    Huang, Wen-Mao
    Huang, Zhi-Chao
    Zheng, Yun-Zhe
    Mu, Fang-Ya
    Huang, Rong
    Shi, Guo-Yue
    Sun, Yi-Yang
    Xia, Xing-Hua
    Chen, Wei
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Electronic Reconfiguration of Metal Rhenium Induced by Strong Metal-Support Interaction Enhancing the Hydrogen Evolution Reaction
    Sun, Qiaozhi
    Zhang, Biao
    Song, Kai
    Guo, Yue
    Wang, Yanan
    Liu, Enzuo
    He, Fang
    ADVANCED MATERIALS INTERFACES, 2021, 8 (17)
  • [4] Strong electronic metal-support interaction between Pt and stainless mesh for enhancing the hydrogen evolution reaction
    Li, Jin
    Luo, Jie
    Chen, Haipeng
    Qin, Bin
    Yuan, Changzhou
    Wu, Naiteng
    Liu, Guilong
    Liu, Xianming
    CHEMICAL COMMUNICATIONS, 2022, 58 (71) : 9918 - 9921
  • [5] Unraveling the Unique Strong Metal-Support Interaction in Titanium Dioxide Supported Platinum Clusters for the Hydrogen Evolution Reaction
    Luo, Zhouxin
    Han, Xiao
    Ma, Zhentao
    Zhang, Bingxing
    Zheng, Xusheng
    Liu, Yongfeng
    Gao, Mingxia
    Zhao, Guoqiang
    Lin, Yue
    Pan, Hongge
    Sun, Wenping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (32)
  • [6] Self-Accommodation Induced Electronic Metal-Support Interaction on Ruthenium Site for Alkaline Hydrogen Evolution Reaction
    Li, Changqing
    Kim, Su Hwan
    Lim, Hyeong Yong
    Sun, Qikun
    Jiang, Yi
    Noh, Hyuk-Jun
    Kim, Seok-Jin
    Baek, Jaehoon
    Kwak, Sang Kyu
    Baek, Jong-Beom
    ADVANCED MATERIALS, 2023, 35 (21)
  • [7] Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction
    Yi Shi
    Zhi-Rui Ma
    Yi-Ying Xiao
    Yun-Chao Yin
    Wen-Mao Huang
    Zhi-Chao Huang
    Yun-Zhe Zheng
    Fang-Ya Mu
    Rong Huang
    Guo-Yue Shi
    Yi-Yang Sun
    Xing-Hua Xia
    Wei Chen
    Nature Communications, 12
  • [8] Improving Electrocatalytic Nitrogen Reduction Selectivity and Yield by Suppressing Hydrogen Evolution Reaction via Electronic Metal-Support Interaction
    Xie, Mingsen
    Dai, Fangfang
    Guo, Huixia
    Du, Peiyao
    Xu, Xinru
    Liu, Jia
    Zhang, Zhen
    Lu, Xiaoquan
    ADVANCED ENERGY MATERIALS, 2023, 13 (21)
  • [9] Dewetting of Pt Nanoparticles Boosts Electrocatalytic Hydrogen Evolution Due to Electronic Metal-Support Interaction
    Harsha, Shreyas
    Sharma, Rakesh K.
    Dierner, Martin
    Baeumer, Christoph
    Makhotkin, Igor
    Mul, Guido
    Ghigna, Paolo
    Spiecker, Erdmann
    Will, Johannes
    Altomare, Marco
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [10] Impacts of Metal-Support Interaction on Hydrogen Evolution Reaction of Cobalt-Nitride-Carbide Catalyst
    Zhang, Xuan
    Li, Yu-An
    Huang, Yaozhen
    Mu, Haiqiang
    Gu, Xiaofeng
    Li, Feng
    Wang, Zheng
    Li, Jing
    FRONTIERS IN CHEMISTRY, 2022, 9