Prediction of regional water resources carrying capacity based on stochastic simulation: A case study of Beijing-Tianjin-Hebei Urban Agglomeration

被引:0
|
作者
Xu, Wentao [1 ,2 ,3 ,4 ]
Jin, Junliang [1 ,3 ,4 ]
Zhang, Jianyun [1 ,3 ,4 ]
Yuan, Shanshui [1 ,3 ,4 ]
Tang, Ming [5 ,6 ]
Liu, Yanli [4 ]
Guan, Tiesheng [4 ]
机构
[1] Hohai Univ, Natl Key Lab Water Disaster Prevent, Nanjing 210098, Peoples R China
[2] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Jiangsu, Peoples R China
[3] Yangtze Inst Conservat & Dev, Nanjing 210098, Peoples R China
[4] Minist Water Resources, Res Ctr Climate Change, Nanjing 210029, Peoples R China
[5] Nanchang Inst Technol, Sch Hydraul & Ecol Engn, Nanchang, Jiangxi, Peoples R China
[6] Jiangxi Key Lab Hydrol Water Resources & Water Env, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Water resources carrying capacity; GWO-SVM; Monte-Carlo; Regulation scheme; Beijing-Tianjin-Hebei urban agglomeration; SYSTEM;
D O I
10.1016/j.ejrh.2024.101976
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: Beijing-Tianjin-Hebei urban agglomeration in China Study focus: The prediction of water resources carrying capacity (WRCC) can provide an effective reference for the rational allocation and efficient utilization of water resources. Traditional prediction methods obtained a definite WRCC value but fail to reflect the uncertainty of WRCC changes and limit reference for the optimal allocation of water resources. To ensure the accuracy, availability and comprehensiveness of prediction, this paper adopts the improved principal component analysis (PCA) to screen indicators, and predicts the WRCC through the coupled model of Monte Carlo and Grey Wolf Optimization-Support Vector Machine(GWO-SVM), addressing single result issues and computational complexity. At the same time, various regulation schemes for sensitive indicators are designed to provide an effective guidance for the optimal allocation and sustainable use of water resources. New hydrological insights for the region: In 2025, the probability of WRCC in Tianjin, Handan, Xingtai, Hengshui, Cangzhou, Langfang to maintain grade III is more than 80 %, and that in Beijing, Baoding, Tangshan, Qinhuangdao, Zhangjiakou, Chengde to reach grade IV is more than 50 %. The sensitivity analysis shows that the sensitive indicators mainly focus on water supply and consumption, water use efficiency and pollutant gas emissions. The WRCC can be further improved under different schemes. The results can provide effective guidance for the optimal allocation of water resources and maintain sustainable economic and social development in Beijing-Tianjin-Hebei urban agglomeration.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Evaluation of urban comprehensive carrying capacity: case study of the Beijing-Tianjin-Hebei urban agglomeration, China
    Zhao, Lingling
    Li, Jiaying
    Shao, Qinglong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (16) : 19774 - 19782
  • [2] Exploring the temporal and spatial variability of water and land resources carrying capacity based on ecological footprint: A case study of the Beijing-Tianjin-Hebei urban agglomeration, China
    Zhang, Fengli
    Zhu, Fuzu
    CURRENT RESEARCH IN ENVIRONMENTAL SUSTAINABILITY, 2022, 4
  • [3] Evaluation of urban comprehensive carrying capacity: case study of the Beijing–Tianjin–Hebei urban agglomeration, China
    Lingling Zhao
    Jiaying Li
    Qinglong Shao
    Environmental Science and Pollution Research, 2020, 27 : 19774 - 19782
  • [4] An analysis framework for the ecological security of urban agglomeration: A case study of the Beijing-Tianjin-Hebei urban agglomeration
    Peng, Chenchen
    Li, Bo
    Nan, Bo
    JOURNAL OF CLEANER PRODUCTION, 2021, 315
  • [5] Unraveling energy-water nexus paths in urban agglomeration: A case study of Beijing-Tianjin-Hebei
    Wang, Saige
    Chen, Bin
    APPLIED ENERGY, 2021, 304
  • [6] Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration
    Chu, Mingruo
    Lu, Jiayi
    Sun, Dongqi
    LAND, 2022, 11 (02)
  • [7] The Economic Growth Efficiency of the Beijing-Tianjin-Hebei Urban Agglomeration
    Zhang, Mengyao
    2018 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ECONOMICS SYSTEM AND INDUSTRIAL SECURITY ENGINEERING (IEIS 2018), 2018,
  • [8] Climatic risks of Beijing-Tianjin-Hebei urban agglomeration and their changes
    Chen Sining
    Guo Jun
    GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 1298 - 1314
  • [9] Impact of Climate on the Carbon Sink Capacity of Ecological Spaces: A Case Study from the Beijing-Tianjin-Hebei Urban Agglomeration
    Wang, Xinyan
    Wang, Kaiping
    Zhang, Yunlu
    Gao, Jingran
    Xiong, Yiming
    LAND, 2023, 12 (08)
  • [10] The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China's Beijing-Tianjin-Hebei Region
    He, Yingting
    Xia, Chuyu
    Shao, Zhuang
    Zhao, Jing
    LAND, 2022, 11 (06)