On outer bi-Lipschitz extensions of linear Johnson-Lindenstrauss embeddings of subsets of RN

被引:0
|
作者
Chiclana, Rafael [1 ]
Iwen, Mark A. [2 ,3 ]
Roach, Mark Philip [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA
关键词
D O I
10.1007/s00211-024-01437-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The celebrated Johnson-Lindenstrauss lemma states that for all epsilon is an element of (0, 1) and finite sets X subset of R-N with n > 1 elements, there exists a matrix Phi is an element of R-mxN with m = O(epsilon(-2) log n) such that (1 - epsilon)parallel to x - y parallel to(2) <= parallel to Phi x - Phi y parallel to(2) <= (1 + epsilon)parallel to x - y parallel to(2) for all x, y is an element of X. Herein we consider so-called "terminal embedding" results which have recently been introduced in the computer science literature as stronger extensions of the Johnson-Lindenstrauss lemma for finite sets. After a short survey of this relatively recent line of work, we extend the theory of terminal embeddings to hold for arbitrary (e.g., infinite) subsets X subset of R-N, and then specialize our generalized results to the case where X is a low-dimensional compact submanifold of R-N. In particular, we prove the following generalization of the Johnson-Lindenstrauss lemma: For all epsilon is an element of (0, 1) and X subset of R-N, there exists a terminal embedding f : R-N -> R-m such that (1 - epsilon)parallel to x - y parallel to(2) <= parallel to f(x) - f(y)parallel to(2) <= (1 + epsilon)parallel to x - y parallel to(2) for all x is an element of X and for all y is an element of R-N. Crucially, we show that the dimension m of the range of f above is optimal up to multiplicative constants, satisfying m = O(epsilon(-2)omega(2)(S-X)), where omega(S-X) is the Gaussian width of the set of unit secants of X, S-X = <({(x - y)/parallel to x - y parallel to(2) : x not equal y is an element of X})over bar>. Furthermore, our proofs are constructive and yield algorithms for computing a general class of terminal embeddings f, an instance of which is demonstrated herein to allow for more accurate compressive nearest neighbor classification than standard linear Johnson-Lindenstrauss embeddings do in practice.
引用
收藏
页码:2111 / 2130
页数:20
相关论文
共 27 条
  • [1] On Fast Johnson-Lindenstrauss Embeddings of Compact Submanifolds of RN with Boundary
    Iwen, Mark A.
    Schmidt, Benjamin
    Tavakoli, Arman
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (02) : 498 - 555
  • [2] JOHNSON-LINDENSTRAUSS EMBEDDINGS WITH KRONECKER STRUCTURE
    Bamberger, Stefan
    Krahmer, Felix
    Ward, Rachel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (04) : 1806 - 1850
  • [3] NEW BOUNDS FOR CIRCULANT JOHNSON-LINDENSTRAUSS EMBEDDINGS
    Zhang, Hui
    Cheng, Lizhi
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (04) : 695 - 705
  • [4] On outer bi-Lipschitz extensions of linear Johnson-Lindenstrauss embeddings of subsets of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}
    Rafael Chiclana
    Mark A. Iwen
    Mark Philip Roach
    Numerische Mathematik, 2024, 156 (6) : 2111 - 2130
  • [5] Nonlinear Dimension Reduction via Outer Bi-Lipschitz Extensions
    Mahabadi, Sepideh
    Makarychev, Konstantin
    Makarychev, Yury
    Razenshteyn, Ilya
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 1088 - 1101
  • [6] Bi-Lipschitz extensions in the plane
    MacManus, P
    JOURNAL D ANALYSE MATHEMATIQUE, 1995, 66 : 85 - 115
  • [7] Optimal fast Johnson-Lindenstrauss embeddings for large data sets
    Bamberger, Stefan
    Krahmer, Felix
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2021, 19 (01):
  • [8] NEW AND IMPROVED JOHNSON-LINDENSTRAUSS EMBEDDINGS VIA THE RESTRICTED ISOMETRY PROPERTY
    Krahmer, Felix
    Ward, Rachel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1269 - 1281
  • [9] BI-LIPSCHITZ EMBEDDINGS OF QUASICONFORMAL TREES
    David, Guy c.
    Eriksson-bique, S. Y. L. V. E. S. T. E. R.
    Vellis, V. Y. R. O. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2031 - 2044
  • [10] Modewise Johnson-Lindenstrauss embeddings for nuclear many-body theory
    Zare, A.
    Wirth, R.
    Haselby, C. A.
    Hergert, H.
    Iwen, M.
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (05):