Pattern formation and inducing mechanisms of a spatiotemporal discrete system based on a modified Klausmeier model

被引:0
|
作者
Li, You [1 ]
Pang, Jiayi [1 ]
Fang, Weixuan [2 ]
机构
[1] Beijing Forestry Univ, Sch Sci, 35 Tsinghua East Rd, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Sch Technol, 35 Tsinghua East Rd, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Flip bifurcation; Neimark-Sacker bifurcation; Turing pattern; Klausmeier model; coupled map lattices; PREDATOR-PREY SYSTEM; VEGETATION PATTERNS; SEMIARID WOODLANDS; SPACE; PRODUCTIVITY; ORGANIZATION;
D O I
10.1142/S1793524524501523
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we discuss the stability and pattern formation issues of a spatiotemporal discrete system based on the modified Klausmeier model. We begin by constructing the corresponding coupled map lattices model. Then the existence and stability analysis is employed to derive the prerequisites for a stable homogeneous stationary state. Through the center manifold theorem and bifurcation theory, the threshold parameter values for flip bifurcation, Neimark-Sacker bifurcation and Turing bifurcation are individually determined. Based on the analysis of bifurcation, four pattern formation mechanisms are presented. Finally, we simulate the corresponding results numerically. The simulations exhibit rich dynamical behaviors, such as period-doubling cascades, invariant cycles, periodic windows, chaos, and rich Turing patterns. Four pattern formation mechanisms give rise to rich and complex patterns, including mosaics, spots, circles, spirals and cyclic fragmentation. The analysis and findings from this study enhance our comprehension of the intricate relationships among bifurcation, chaos and pattern formation for the spatiotemporal discrete Klausmeier model.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Regular and Irregular Vegetation Pattern Formation in Semiarid Regions: A Study on Discrete Klausmeier Model
    Zhang, Huayong
    Huang, Tousheng
    Dai, Liming
    Pan, Ge
    Liu, Zhao
    Gao, Zichun
    Zhang, Xiumin
    COMPLEXITY, 2020, 2020
  • [2] TRAVELING STRIPES IN THE KLAUSMEIER MODEL OF VEGETATION PATTERN FORMATION
    Carter, Paul
    Doelman, Arjen
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (06) : 3213 - 3237
  • [3] Impact of Parameter Variability and Environmental Noise on the Klausmeier Model of Vegetation Pattern Formation
    Koehnke, Merlin C.
    Malchow, Horst
    MATHEMATICS, 2017, 5 (04)
  • [4] Spatiotemporal Model for Pattern Formation in Phage-Bacteria System
    Li, Xiaochu
    Gonzalez, Floricel
    Scharf, Birgit
    Chen, Jing
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 679A - 679A
  • [5] Dynamic analysis and pattern formation in a Generalized Klausmeier-Gray-Scott Model
    Lian, Wenyan
    Gao, Jianping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 2091 - 2113
  • [6] ON SPATIOTEMPORAL PATTERN FORMATION IN A DIFFUSIVE BIMOLECULAR MODEL
    Peng, Rui
    Yi, Fengqi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (01): : 217 - 230
  • [7] Bifurcation Dynamics and Pattern Formation of a Three-Species Food Chain System with Discrete Spatiotemporal Variables
    Zhang, Huayong
    Pan, Ge
    Huang, Tousheng
    Meng, Tianxiang
    Wang, Jieru
    Huang, Hai
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (11): : 945 - 959
  • [8] Waves analysis and spatiotemporal pattern formation of an ecosystem model
    Camara, B. I.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2511 - 2528
  • [9] Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction
    Wang, Xiaoli
    Shi, Junping
    Zhang, Guohong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (01)
  • [10] Interaction of Cellular and Network Mechanisms in Spatiotemporal Pattern Formation in Neuronal Networks
    Bogaard, Andrew
    Parent, Jack
    Zochowski, Michal
    Booth, Victoria
    JOURNAL OF NEUROSCIENCE, 2009, 29 (06): : 1677 - 1687