Nonparametric spatio-temporal modeling: Contruction of a geographically and temporally weighted spline regression

被引:0
|
作者
Sifriyani [1 ]
Syaripuddin
Fathurahman, M. [3 ]
Sari, Nariza Wanti Wulan [3 ]
Fauziyah, Meirinda [3 ]
Dani, Andrea Tri Rian [2 ]
Jannah, Raudhatul [3 ]
Juriani, S. Dwi [3 ]
Kusuma, Ratna [4 ]
机构
[1] Mulawarman Univ, Fac Math & Nat Sci, Dept Math, Study Program Stat, Samarinda, Indonesia
[2] Mulawarman Univ, Fac Math & Nat Sci, Dept Math, Study Program Math, Samarinda, Indonesia
[3] Mulawarman Univ, Fac Math & Nat Sci, Dept Math, Study Program Stat,Appl Stat Lab, Samarinda, Indonesia
[4] Univ Mulawarman, Fac Math & Nat Sci, Dept Biol, Samarinda, Indonesia
关键词
Construction of model; GTWR; GTWSNR; Nonparametric regression; Spatio temporal; TESTS;
D O I
10.1016/j.mex.2024.103098
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research introduces a new model called Geographically Temporally and Weighted Spline Nonparametric Regression (GTWSNR), which is an extension of the Geographically Temporally Weighted Regression (GTWR) model. The GTWSNR model combines nonparametric spline regression with spatial and temporal weighting, integrating geographic information and time series on an unknown regression curve. This model provides insights into spatial influences over multiple time series observations and produces forecasting results based on the analyzed spatial data. GTWSNR is designed to address the limitations of the traditional GTWR model in handling unknown regression functions. The research aims to develop the GTWSNR model to overcome these challenges and uses the Maximum Likelihood Estimator (MLE) to estimate the model. Key contributions of this study include: center dot The development of the GTWSNR model as a spatiotemporal approach to address unknown regression functions using a truncated spline estimator in nonparametric regression. center dot The application of a weighted Maximum Likelihood Estimator (MLE) method for estimating the GTWSNR model. center dot The implementation of the GTWSNR model on rice productivity data from 34 provinces in Indonesia to demonstrate its effectiveness as the best model.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices
    Huang, Bo
    Wu, Bo
    Barry, Michael
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2010, 24 (03) : 383 - 401
  • [2] Mixed geographically and temporally weighted regression for spatio-temporal deformation modelling
    Yang, Zhijia
    Dai, Wujiao
    Yu, Wenkun
    Shi, Qiang
    Santerre, Rock
    SURVEY REVIEW, 2022, 54 (385) : 290 - 300
  • [3] Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression
    Chu, Hone-Jay
    Kong, Shish-Jeng
    Chang, Chih-Hua
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 65 : 1 - 11
  • [4] Spatio-temporal characteristics of soil Cd pollution and its influencing factors: A Geographically and temporally weighted regression (GTWR) method
    Zhao, Menglu
    Wang, Huijuan
    Sun, Jiaxun
    Tang, Rui
    Cai, Boya
    Song, Xiaoyong
    Huang, Xinmiao
    Huang, Jian
    Fan, Zhengqiu
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 446
  • [5] Exploring the spatio-temporal dynamics of geographical processes with geographically weighted regression and geovisual analytics
    Demsar, Urska
    Fotheringham, A. Stewart
    Charlton, Martin
    INFORMATION VISUALIZATION, 2008, 7 (3-4) : 181 - 197
  • [6] Generalized geographically and temporally weighted regression
    Yu, Hanchen
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2025, 117
  • [7] A SPATIO-TEMPORAL DESCRIPTION OF COVID-19 CASES IN EAST BORNEO USING IMPROVED GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION (I-GTWR)
    Sifriyani
    Mandang, Idris
    Amijaya, Fidia Deny Tisna
    Sholihin, Miftahus
    Dani, Andrea Tri Rian
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [8] Spatio-temporal evolution relationships between provincial CO2 emissions and driving factors using geographically and temporally weighted regression model
    Li, Wanying
    Ji, Zhengsen
    Dong, Fugui
    SUSTAINABLE CITIES AND SOCIETY, 2022, 81
  • [9] Selection of optimal knot point and best geographic weighted on geographically weighted spline nonparametric regression model
    Sifriyani
    Budiantara, I. Nyoman
    Candra, Krishna Purnawan
    Putri, Marisa
    METHODSX, 2024, 13
  • [10] Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression
    Laome, Lilis
    Budiantara, I. Nyoman
    Ratnasari, Vita
    MATHEMATICS, 2023, 11 (01)