A drone-based study on the possibilities of agricultural crop assessment using reflectance index in NIR

被引:0
|
作者
Atanasov, Asparuh [1 ]
机构
[1] Tech Univ, Fac Mech Engn, Dept Mech & Elements Machines, Varna 9000, Bulgaria
来源
关键词
NDVI; NIR; NIRI; vegetation indices; VEGETATION INDEX;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
& Tcy;hrough the reflective vegetation indices to assess plant stress, we can accurately determine the condition of the crops and plan the necessary actions. The research aims to evaluate the performance of the NIRI (Near InfraRed Index) index using a NIR camera mounted on a drone. The vegetation index NIRI compared to NDVI was studied. The results show good estimation capabilities and similar trends of change. The results of regression analysis of the relationships between NDVI and NIRI for wheat crops are Multiple R = 0.979; R Square = 0.959.
引用
收藏
页码:1136 / 1140
页数:5
相关论文
共 50 条
  • [1] Photochemical Reflectance Index (PRI) Mapping using Drone-based Hyperspectral Image for Evaluation of Crop Stress and its Application to Multispectral Imagery
    Na, Sang-il
    Park, Chan-won
    So, Kyu-ho
    Ahn, Ho-yong
    Lee, Kyung-do
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (05) : 637 - 647
  • [2] Examination of appropriate observation time and correction of vegetation index for drone-based crop monitoring
    Hama, Akira
    Tanaka, Kei
    Chen, Bin
    Kondoh, Akihiko
    JOURNAL OF AGRICULTURAL METEOROLOGY, 2021, 77 (03) : 200 - 209
  • [3] Direct reflectance transformation methodology for drone-based hyperspectral imaging
    Suomalainen, Juha
    Oliveira, Raquel A.
    Hakala, Teemu
    Koivumaki, Niko
    Markelin, Lauri
    Nasi, Roope
    Honkavaara, Eija
    REMOTE SENSING OF ENVIRONMENT, 2021, 266
  • [4] Drone-Based Vibration Monitoring and Assessment of Structures
    Carroll, Sabrina
    Satme, Joud
    Alkharusi, Shadhan
    Vitzilaios, Nikolaos
    Downey, Austin
    Rizos, Dimitris
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [5] RF Exposure Assessment by Drone-Based Technology
    Paniagua-Sanchez, Jesus M.
    Marabel-Calderon, Christopher
    Garcia-Cobos, Francisco J.
    Gordillo-Guerrero, Antonio
    Rufo-Perez, Montana
    Jimenez-Barco, Antonio
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [6] Assessment of drone-based surface flow observations
    Tauro, Flavia
    Petroselli, Andrea
    Arcangeletti, Ettore
    HYDROLOGICAL PROCESSES, 2016, 30 (07) : 1114 - 1130
  • [7] Fluorescence Mapping of Agricultural Fields Utilizing Drone-Based LIDAR
    Lednev, Vasily N.
    Grishin, Mikhail Ya.
    Sdvizhenskii, Pavel A.
    Kurbanov, Rashid K.
    Litvinov, Maksim A.
    Gudkov, Sergey V.
    Pershin, Sergey M.
    PHOTONICS, 2022, 9 (12)
  • [8] Transfer Learning for Plant-level Crop Classification using Drone-based Hyperspectral Imagery
    Sarma, Anagha S.
    Nidamanuri, Rama Rao
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 245 - 248
  • [9] Drone-Based Participatory Mapping: Examining Local Agricultural Knowledge in the Galapagos
    Colloredo-Mansfeld, Mia
    Laso, Francisco J.
    Arce-Nazario, Javier
    DRONES, 2020, 4 (04)
  • [10] Crop Water Stress Index (CWSI) Mapping for Evaluation of Abnormal Growth of Spring Chinese Cabbage Using Drone-based Thermal Infrared Image
    Na, Sang-il
    Ahn, Ho-yong
    Park, Chan-won
    Hong, Suk-young
    So, Kyu-ho
    Lee, Kyung-do
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (05) : 667 - 677