Dynamics of Polymeric Re-Entrant Auxetic Structures: Cyclic Compression Studies

被引:0
|
作者
Plewa, Julian [1 ]
Plonska, Malgorzata [1 ]
Junak, Grzegorz [2 ]
机构
[1] Univ Silesia Katowice, Inst Mat Engn, Fac Sci & Technol, 75 Pulku Piechoty Str, PL-41500 Chorzow, Poland
[2] Silesian Tech Univ, Fac Mat Engn, 8 Krasinskiego Str, PL-40019 Katowice, Poland
关键词
auxetic structures; re-entrant unit cells; hysteresis; Mullins effect;
D O I
10.3390/polym17060825
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The present study investigated the dynamic behavior of structures made of re-entrant unit cells subjected to cyclic compressive loading limited to the elastic range. The structures were assembled from printed polymer re-entrant cells in six combinations. Through the given compression cycles for three different amplitude values, strain-force relationships, which had the shape of a hysteresis loop, were obtained. Under compression, all unit cells of the structures deformed uniformly, though only for a certain amount of strain, whereas with larger changes, they underwent uncontrolled deformation. Experiments showed that structures composed of more than one unit cell exhibit different mechanical characteristics. It was observed that the width of the hysteresis loop depended on the degree of closing the structure and on the compression amplitude. The obtained hysteresis curves for different amplitudes also testify to the occurrence of the Mullins effect for these polymeric auxetic structures. Taking into account the maximum values of changes in dimensions for a given compression cycle, Poisson's ratio values were determined, which were negative and below unity. The effect of strut thickness on the NPR was confirmed, decreasing its negative value along with the increasing thickness.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On the auxetic behaviour of metamaterials with re-entrant cell structures
    Spagnoli, Andrea
    Brighenti, Roberto
    Lanfranchi, Matteo
    Soncini, Francesco
    XXIII ITALIAN GROUP OF FRACTURE MEETING, IGFXXIII, 2015, 109 : 410 - 417
  • [2] Metallic Metamaterials with Auxetic Properties: Re-Entrant Structures
    Plewa, Julian
    Plonska, Malgorzata
    Junak, Grzegorz
    METALS, 2024, 14 (11)
  • [3] Photoelasticity as a Tool for Stress Analysis of Re-Entrant Auxetic Structures
    Schurger, Barbara
    Pastor, Miroslav
    Frankovsky, Peter
    Lengvarsky, Pavol
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [4] Performance Evaluation of Auxetic Molecular Sieves with Re-Entrant Structures
    Lim, Teik-Cheng
    Acharya, Rajendra U.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2010, 6 (06) : 718 - 724
  • [5] Effect of fillers on compression loading performance of modified re-entrant honeycomb auxetic sandwich structures
    Faisal, Nadimul Haque
    Scott, Lindsay
    Booth, Findlay
    Duncan, Scott
    McLeod, Abbi
    Droubi, Mohamad Ghazi
    Njuguna, James
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2023, 58 (02): : 98 - 117
  • [6] Exploring re-entrant auxetic silicone structures to design bra pads
    Keung, Yin-ching
    Yick, Kit-lun
    Yu, Annie
    Yip, Joanne
    POLYMER TESTING, 2024, 135
  • [7] Large deformation of TPU re-entrant auxetic structures designed by TO approach
    Taherkhani, Bahman
    Anaraki, Ali Pourkamali
    Kadkhodapour, Javad
    Rezaei, Saeed
    Tu, Haoyun
    JOURNAL OF ELASTOMERS AND PLASTICS, 2021, 53 (04): : 347 - 369
  • [8] Fatigue crack initiation and propagation in re-entrant auxetic cellular structures
    Ncemer, Branko
    Kramberger, Janez
    Vuherer, Tomaz
    Glodez, Srecko
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 126 : 241 - 247
  • [9] In-plane compression response of foam filled re-entrant auxetic structure
    Xuke Lan
    Guang Wu
    Guangyan Huang
    Applied Composite Materials, 2022, 29 : 2245 - 2263
  • [10] In-plane compression response of foam filled re-entrant auxetic structure
    Lan, Xuke
    Wu, Guang
    Huang, Guangyan
    APPLIED COMPOSITE MATERIALS, 2022, 29 (06) : 2245 - 2263