ALMA: Adjustable Location and Multi-Angle Attention for Fine-Grained Visual Classification

被引:0
|
作者
Ding, Boyu [1 ]
Xu, Xiaofeng [1 ,2 ]
Bao, Xianglin [1 ]
Yan, Nan [1 ,2 ]
Zhang, Ruiheng [3 ]
机构
[1] Anhui Polytech Univ, Sch Comp & Informat, Wuhu 241000, Peoples R China
[2] Anhui Polytech Univ, Ind Innovat Technol Res Co Ltd, Wuhu 241000, Peoples R China
[3] Beijing Inst Technol, Sch Mechatron Engn, Beijing 100081, Peoples R China
关键词
Fine-grained visual classification; Adjustable location; Multi-angle attention; Image cropping; Background masking;
D O I
10.1109/CSCWD61410.2024.10580689
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fine-grained visual classification (FGVC) is a challenging but realistic problem that recognizes objects from common categories with subtle differences. Most previous work focused on identifying more regional features while neglecting the fact that these regions still contain a large amount of secondary information. To alleviate the interference of the secondary information, in this paper, we propose a novel Adjustable Location and Multi-angle Attention (ALMA) network to solve the FGVC problem. ALMA consists of two branches, i.e. the adjustable location module and the multi-angle attention module. Specifically, in the adjustable localization module, we first locate the interested area of the object and obtain the adjusted cropped area by adjusting the interested area through the background masking. Then, the adjusted regions will be gathered to locate objects with better prediction performance. Furthermore, we design the multi-angle attention module to gradually maximize the difference between the original attention map and the randomly selected attention map. Consequently, the model can focus on the main information which represents the entire object. To evaluate the effectiveness of the proposed model, we conduct extensive experiments on three public fine-grained benchmark datasets. Experimental results demonstrate that the proposed ALMA model has significant superiority over other FGVC methods.
引用
收藏
页码:2967 / 2972
页数:6
相关论文
共 50 条
  • [1] Multi-Granularity Part Sampling Attention for Fine-Grained Visual Classification
    Wang, Jiahui
    Xu, Qin
    Jiang, Bo
    Luo, Bin
    Tang, Jinhui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4529 - 4542
  • [2] A Progressive Gated Attention Model for Fine-Grained Visual Classification
    Zhu, Qiangxi
    Li, Zhixin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2063 - 2068
  • [3] Learning Hierarchal Channel Attention for Fine-grained Visual Classification
    Guan, Xiang
    Wang, Guoqing
    Xu, Xing
    Bin, Yi
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5011 - 5019
  • [4] A collaborative gated attention network for fine-grained visual classification
    Zhu, Qiangxi
    Kuang, Wenlan
    Li, Zhixin
    DISPLAYS, 2023, 79
  • [5] Hierarchical attention vision transformer for fine-grained visual classification
    Hu, Xiaobin
    Zhu, Shining
    Peng, Taile
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 91
  • [6] Diversified Visual Attention Networks for Fine-Grained Object Classification
    Zhao, Bo
    Wu, Xiao
    Feng, Jiashi
    Peng, Qiang
    Yan, Shuicheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (06) : 1245 - 1256
  • [7] Leveraging Fine-Grained Labels to Regularize Fine-Grained Visual Classification
    Wu, Junfeng
    Yao, Li
    Liu, Bin
    Ding, Zheyuan
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION (ICCMS 2019) AND 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND APPLICATIONS (ICICA 2019), 2019, : 133 - 136
  • [8] Dual-Dependency Attention Transformer for Fine-Grained Visual Classification
    Cui, Shiyan
    Hui, Bin
    SENSORS, 2024, 24 (07)
  • [9] Progressive Co-Attention Network for Fine-Grained Visual Classification
    Zhang, Tian
    Chang, Dongliang
    Ma, Zhanyu
    Guo, Jun
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [10] A Streamlined Attention Mechanism for Image Classification and Fine-Grained Visual Recognition
    Dakshayani Himabindu D.
    Praveen Kumar S.
    Dakshayani Himabindu, D. (dakshayanihimabindu_d@vnrvjiet.in), 1600, Brno University of Technology (27): : 59 - 67