An efficient nondestructive detection method of rapeseed varieties based on hyperspectral imaging technology

被引:0
|
作者
Wang, Jian [1 ]
Zhou, Xin [1 ,2 ,3 ]
Liu, Yang [1 ]
Sun, Jun [1 ]
Guo, Peirui [4 ]
Lv, Weijian [1 ]
机构
[1] Informat Engn Jiangsu Univ, Sch Elect, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Key Lab Theory & Technol Intelligent Agr Machinery, Zhenjiang 212013, Peoples R China
[3] Jiangsu Prov & Educ Minist, Cosponsored Synergist Innovat Ctr Modern Agr Equip, Zhenjiang 212013, Peoples R China
[4] Shenyang Univ Technol, Sch Elect Engn, Shenyang 110027, Peoples R China
基金
中国博士后科学基金;
关键词
Hyperspectral imaging; Rapeseed; Dimensionality reduction algorithm; Model optimization; Nondestructive testing; VARIABLE SELECTION;
D O I
10.1016/j.microc.2025.112913
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In response to the diverse requirements for rapeseed varieties in different fields and the prevalence of counterfeit seeds, efficient nondestructive detection methods are essential. Hyperspectral imaging (HSI) is widely used for this purpose, but its high dimensionality and redundant information complicate practical applications. This study proposes a dimensionality reduction algorithm that first selects feature wavelength intervals and then extracts features. The modified interval random frog (miRF) conducts supervised training on labeled spectral data to evaluate and select important wavelength intervals, capturing interactions between features while eliminating redundancy. Additionally, kernel principal component analysis (KPCA) addresses the nonlinear relationships among the selected intervals by mapping the data into a high-dimensional space, revealing its intrinsic structure and enhancing model generalization. This integrated approach constructs an optimized, streamlined feature space, improving detection capabilities for rapeseed varieties. The dimensionality reduction results of KPCAmiRF are also analyzed, and a strategy of feature selection followed by extraction is established. Furthermore, nature-inspired optimization algorithms, including hippopotamus optimization (HO), goose optimization (GOOSE), and artificial gorilla troop optimization (GTO), are introduced to refine hyperparameter selection and create a robust framework for efficient nondestructive detection. Ultimately, the GOOSE-SVC model established based on the spectral features extracted by miRF-KPCA demonstrated superior model performance and achieved an accuracy rate of 98.96% on the prediction set. The results validate the potential of HSI in rapeseed variety detection and present an innovative method for dimensionality reduction of hyperspectral data.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Nondestructive identification of green tea varieties based on hyperspectral imaging technology
    Sun, Jun
    Tang, Kai
    Wu, Xiaohong
    Dai, Chunxia
    Chen, Yong
    Shen, Jifeng
    JOURNAL OF FOOD PROCESS ENGINEERING, 2018, 41 (05)
  • [2] Nondestructive Identification of Millet Varieties Using Hyperspectral Imaging Technology
    X. Wang
    Z. Li
    D. Zheng
    W. Wang
    Journal of Applied Spectroscopy, 2020, 87 : 54 - 61
  • [3] Nondestructive Identification of Millet Varieties Using Hyperspectral Imaging Technology
    Wang, X.
    Li, Z.
    Zheng, D.
    Wang, W.
    JOURNAL OF APPLIED SPECTROSCOPY, 2020, 87 (01) : 54 - 61
  • [4] A Rapid and Nondestructive Detection Method for Rapeseed Quality Using NIR Hyperspectral Imaging Spectroscopy and Chemometrics
    Wang, Du
    Li, Xue
    Ma, Fei
    Yu, Li
    Zhang, Wen
    Jiang, Jun
    Zhang, Liangxiao
    Li, Peiwu
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [5] Nondestructive detection for egg freshness grade based on hyperspectral imaging technology
    Yao, Kunshan
    Sun, Jun
    Zhou, Xin
    Nirere, Adria
    Tian, Yan
    Wu, Xiaohong
    JOURNAL OF FOOD PROCESS ENGINEERING, 2020, 43 (07)
  • [6] The rapid detection method of chlorophyll content in rapeseed based on hyperspectral technology
    Tang, Hongyuan
    Liao, Guiping
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2021, 45 (04) : 465 - 474
  • [7] Nondestructive Rapid Identification of Soybean Varieties Using Hyperspectral Imaging Technology
    Wang, L.
    Pang, L.
    Yan, L.
    Zhang, J.
    JOURNAL OF APPLIED SPECTROSCOPY, 2022, 89 (01) : 84 - 91
  • [8] Nondestructive Rapid Identification of Soybean Varieties Using Hyperspectral Imaging Technology
    L. Wang
    L. Pang
    L. Yan
    J. Zhang
    Journal of Applied Spectroscopy, 2022, 89 : 84 - 91
  • [9] Temperature Stress Detection Method of Rapeseed Seedling Based on Hyperspectral Imaging
    Zhang X.
    Zhang Y.
    Jiang H.
    Wang Y.
    Lin Y.
    Rao X.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (06): : 232 - 241and276
  • [10] Method and system for nondestructive detection of freshness in Penaeus vannamei based on hyperspectral technology
    Guo, Wei
    Li, Xinxing
    Xie, Tianhua
    AQUACULTURE, 2021, 538