Tilings of the hyperbolic space and Lipschitz functions

被引:0
|
作者
Bargetz, Christian [1 ]
Luggin, Franz [1 ]
Russo, Tommaso [1 ]
机构
[1] Univ Innsbruck, Dept Math, Technikerstr 13, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Lipschitz-free space; Banach space of Lipschitz functions; hyperbolic d-space; tiling; polytope; linear extension operator; Schauder basis; APPROXIMATION PROPERTIES; REPRESENTATIONS; EXTENSIONS;
D O I
10.4153/S0008414X24000804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a special tiling for the hyperbolic d-space H-d for d=2,3,4 to construct an (almost) explicit isomorphism between the Lipschitz-free space F(H-d) and F(P)circle plus F(N), where P is a polytope in R-d and N a net in H(d )coming from the tiling. This implies that the spaces F(H-d) and F(R-d)circle plus F(M) are isomorphic for every net M in H-d. In particular, we obtain that, for d=2,3,4, F(H-d) has a Schauder basis. Moreover, using a similar method, we also give an explicit isomorphism between Lip(H-d) and Lip(R-d).
引用
收藏
页数:21
相关论文
共 50 条