Microbial necromass carbon contributed to soil organic carbon accumulation and stabilization in the newly formed inland wetlands

被引:1
|
作者
Liu, Xiaoke [1 ]
Wang, Yijing [1 ]
Zhao, Yongkang [1 ]
Zhang, Xuan [1 ]
Wang, Yan [1 ]
Cao, Qingqing [2 ]
Liu, Jian [1 ]
机构
[1] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China
[2] Shandong Jianzhu Univ, Sch Architecture & Urban Planning, Jinan 250100, Peoples R China
关键词
Chronosequence development; Microbial necromass carbon; Newly formed inland wetlands; Plant necromass carbon; Soil organic carbon; Stabilization; MATTER; LIGNIN; MECHANISMS; OXIDATION;
D O I
10.1016/j.envres.2024.120397
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Inland wetlands might be an important "carbon sink", and the chronosequence development of newly formed inland wetlands offers a natural and suitable opportunity for studying the dynamic effect of plant and microbial necromass carbon (PlantC and MNC) on the soil organic carbon (SOC) stabilization. The space-for-time chronosequence approach was used and plots were established in the three ages of newly formed inland wetlands (2, 5, and 16 years). Soil samples were collected in the surface (0-10 cm) and subsurface soil (20-30 cm). Results showed that accumulation of SOC, PlantC, and MNC were significantly larger in the surface than those in the subsurface soil. Moreover, MNC stocks were more abundant than PlantC in the wetland ecosystem both in the surface and subsurface soil. During the chronosequence development, dynamics of SOC and its components accumulation were similar to MNC, both exhibiting an increasing and then decreasing trend in the surface and subsurface soil, except for free particulate organic carbon in the subsurface soil. Structural equation models revealed that changes of MNC affected by environmental variables were the main cause of MAOC dynamics both in the surface and subsurface soil, suggesting that contribution of MNC to MAOC would be the key way of carbon stabilization in the newly formed inland wetlands. Furthermore, MNC accumulation in the surface soil was closely linked to pH, CEC, and soil texture, while in the subsurface soil affected by soil nutrients (TN and NH4+-N). Particularly, despite the decreasing SOC stocks in the 16-year wetland, the stability has significantly enhanced due to the increasing persistent individual amino sugars. This study provides new information on the dynamics of SOC accumulation and highlights the significance of MNC on the SOC sequestration in the newly formed inland wetlands, which is important for the understanding of wetland SOC stock dynamics and stabilization mechanisms.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The contribution of microbial necromass carbon to soil organic carbon in soil aggregates
    Zhang, Qi
    Li, Xiangyang
    Liu, Jianjian
    Liu, Jiayi
    Han, Lei
    Wang, Xing
    Liu, Hanyu
    Xu, Miaoping
    Yang, Gaihe
    Ren, Chengjie
    Han, Xinhui
    APPLIED SOIL ECOLOGY, 2023, 190
  • [2] The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration
    Wang, Baorong
    Liang, Chao
    Yao, Hongjia
    Yang, Env
    An, Shaoshan
    CATENA, 2021, 207
  • [3] Substrate and community regulations on microbial necromass accumulation from newly added and native soil carbon
    Cai, Yue
    Feng, Xiaojuan
    BIOLOGY AND FERTILITY OF SOILS, 2023, 59 (07) : 763 - 775
  • [4] Substrate and community regulations on microbial necromass accumulation from newly added and native soil carbon
    Yue Cai
    Xiaojuan Feng
    Biology and Fertility of Soils, 2023, 59 : 763 - 775
  • [5] Microbial physiology and necromass regulate agricultural soil carbon accumulation
    Kallenbach, C. M.
    Grandy, A. S.
    Frey, S. D.
    Diefendorf, A. F.
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 91 : 279 - 290
  • [6] Accumulation of soil microbial necromass carbon and its contribution to soil organic carbon after vegetation restoration in the Tibetan Plateau
    Pei, Xiangjun
    Lei, Junjie
    Wang, Xiaodong
    Xiao, Yang
    Yang, Zhihan
    Zhao, Runying
    Zeng, Cangli
    Luo, Zhenyu
    Li, Jingji
    Lei, Ningfei
    Yang, Qingwen
    Peng, Shuming
    Cheng, Xuejun
    Li, Pingfeng
    Tang, Xiaolu
    GLOBAL ECOLOGY AND CONSERVATION, 2024, 56
  • [7] Effects of biochar on the accumulation of necromass-derived carbon, the physical protection and microbial mineralization of soil organic carbon
    Chen, Yalan
    Sun, Ke
    Yang, Yan
    Gao, Bo
    Zheng, Hao
    CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 54 (01) : 39 - 67
  • [8] Accumulation of microbial necromass carbon and its contribution to soil organic carbon in artificial grasslands of various vegetation types
    Li, Na
    Zhao, Na
    Xu, Shixiao
    Wang, Yalin
    Wei, Lin
    Zhang, Qian
    Guo, Tongqing
    Wang, Xungang
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2023, 119
  • [9] Microbial necromass carbon drives soil organic carbon accumulation during long-term vegetation succession
    Zhao, Ziwen
    Qin, Yanli
    Wu, Yang
    Chen, Wenjing
    Wang, Hao
    Chen, Jiawen
    Yang, Jinqiu
    Liu, Guobin
    Xue, Sha
    JOURNAL OF APPLIED ECOLOGY, 2025, 62 (04) : 932 - 944
  • [10] Microbial necromass as the source of soil organic carbon in global ecosystems
    Wang, Baorong
    An, Shaoshan
    Liang, Chao
    Liu, Yang
    Kuzyakov, Yakov
    SOIL BIOLOGY & BIOCHEMISTRY, 2021, 162