Self-normalized Cramér type moderate deviations for martingales and applications

被引:0
|
作者
Fan, Xiequan [1 ]
Shao, Qi-man [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Peoples R China
[2] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Stat & Data Sci, SICM, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching process in a random environment; Cram & eacute; r's moderate deviations; martingales; self-normalized sequences; Student's statistic; SUBCRITICAL BRANCHING-PROCESSES; RANDOM ENVIRONMENT; LIMIT-THEOREMS; STATIONARY-SEQUENCES; MOMENTS;
D O I
10.3150/24-BEJ1722
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cram & eacute;r's moderate deviations give a quantitative estimate for the relative error of the normal approximation and provide theoretical justifications for many estimators used in statistics. In this paper, we establish self-normalized Cram & eacute;r type moderate deviations for martingales under some mild conditions. The result extends an earlier work of Fan et al. (Bernoulli 25 (2019) 2793-2823). Moreover, applications of our result to Student's statistic, stationary martingale difference sequences and branching processes in a random environment are also discussed.
引用
收藏
页码:130 / 161
页数:32
相关论文
共 50 条
  • [1] Self-normalized Cramer type moderate deviations for martingales
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    Shao, Qi-Man
    BERNOULLI, 2019, 25 (4A) : 2793 - 2823
  • [2] Self-Normalized Cramér-Type Moderate Deviations for Explosive Vasicek Model
    Hui Jiang
    Yajuan Pan
    Xiao Wei
    Journal of Theoretical Probability, 2024, 37 : 228 - 250
  • [3] Moderate deviations principles for self-normalized martingales
    Worms, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 909 - 914
  • [4] Self-normalized Cramér-type Moderate Deviations for Functionals of Markov Chain
    Xin-wei Feng
    Qi-Man Shao
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 294 - 313
  • [5] Self-normalized Cramér-type Moderate Deviations for Functionals of Markov Chain
    Xin-wei FENG
    Qi-Man SHAO
    Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 294 - 313
  • [6] Normalized and self-normalized Cramér-type moderate deviations for the Euler-Maruyama scheme for the SDE
    Xiequan Fan
    Haijuan Hu
    Lihu Xu
    ScienceChina(Mathematics), 2024, 67 (08) : 1865 - 1880
  • [7] Normalized and self-normalized Cramér-type moderate deviations for the Euler-Maruyama scheme for the SDE
    Fan, Xiequan
    Hu, Haijuan
    Xu, Lihu
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (08) : 1865 - 1880
  • [8] Cramér's moderate deviations for martingales with applications
    Fan, Xiequan
    Shao, Qi-Man
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2046 - 2074
  • [9] Self-normalized Cramer type moderate deviations for stationary sequences and applications
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    Shao, Qi-Man
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5124 - 5148
  • [10] Self-normalized moderate deviations and lils
    Dembo, A
    Shao, QM
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (01) : 51 - 65