Phase formation in the CaO-Al2O3-ZnO system as an analogue to CaO-Al2O3-MgO in spinel containing refractories

被引:0
|
作者
Ramteke, Rajat Durgesh [1 ]
Hemrick, James G. [1 ,2 ]
Mahapatra, Manoj K. [1 ]
机构
[1] Univ Alabama Birmingham, Mech & Mat Engn, Birmingham, AL 35294 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Mech Properties & Mech Grp, Oak Ridge, TN USA
关键词
calcium aluminate cement; gahnite; hibonite; spinel; ternary phase diagram; IN-SITU; MICROSTRUCTURAL EVOLUTION; STRUCTURE REFINEMENT; ALUMINA-MAGNESIA; CASTABLES; BEHAVIOR; RESISTANCE; MECHANISM; AL2O3-MGO-CAO; MORPHOLOGY;
D O I
10.1111/jace.20393
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, gahnite (ZnAl2O4) is gaining attraction as a potential refractory ceramic because of the similarity of its structure and properties with those of magnesium aluminate (MgAl2O4) spinel refractories. Formation of MgO and hibonite solid solution (CaMgxAl12-xO19-0.5x; 0 <= x <= 0.18), CAM-I (Ca2Mg2-3xAl28+2xO46 (0 <= x <= 0.3), and CAM-II (CaMg2-3xAl16+2xO27, 0 <= x <= 0.2) phases with platelet and interlocking microstructure in the CaO-Al2O3-MgO ternary system significantly enhances the high temperature mechanical properties of refractory castables. The CaO-Al2O3-ZnO ternary system has been studied, for the first time to our knowledge, in a selected compositional range with reference to the CaO-Al2O3-MgO system from 1650 degrees C to 1700 degrees C. The formation of ZnO and hibonite solid solution (CaZnxAl12-xO19-0.5x; 0 < x < 0.18), CAZ-I (Ca2Zn2-3xAl28+2xO46; 0 <= x <= 0.3), and CAZ-II (CaZn2-3xAl16+2xO27; 0 <= x <= 0.2) phases with platelet and interlocking morphology have been found. The crystal structures and lattice parameters of ZnO and hibonite solid solution, CAZ-I, and CAZ-II are comparable, respectively, with MgO and hibonite solid solution, CAM-I, and CAM-II. Furthermore, CAZ-I and CAZ-II phases also form due to reaction between hibonite (CaO<middle dot>6Al(2)O(3)) and ZnAl2O4.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] The ternary system CaO-Al2O3-MgO
    Rankin, GA
    Merwin, HE
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1916, 38 : 568 - 588
  • [2] SULFIDE CAPACITIES OF CAO-AL2O3-MGO AND CAO-AL2O3-SIO2SLAGS
    HINO, M
    KITAGAWA, S
    BANYA, S
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1993, 79 (01): : 34 - 40
  • [3] SULFIDE CAPACITIES OF CAO-AL2O3-MGO AND CAO-AL2O3-SIO2 SLAGS
    HINO, M
    KITAGAWA, S
    BANYA, S
    ISIJ INTERNATIONAL, 1993, 33 (01) : 36 - 42
  • [4] Effect of CaO-Al2O3-MgO slags on the formation of MgO-Al2O3 inclusions in ferritic stainless steel
    Joo Hyun Park
    Dong Sik Kim
    Metallurgical and Materials Transactions B, 2005, 36 : 495 - 502
  • [5] Effect of CaO-Al2O3-MgO slags on the formation of MgO-Al2O3 inclusions in ferritic stainless steel
    Park, JH
    Kim, DS
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2005, 36 (04): : 495 - 502
  • [6] Kinetics of MgO Reduction in CaO-Al2O3-MgO Slag by Al in Liquid Fe
    Liu, Chengsong
    Liu, Xiaoqin
    Yang, Xiaoliu
    Zhang, Hua
    Zhong, Ming
    METALS, 2019, 9 (09)
  • [7] The Al-rich part of the system CaO-Al2O3-MgO .1. Phase relationships
    Gobbels, M
    Woermann, E
    Jung, J
    JOURNAL OF SOLID STATE CHEMISTRY, 1995, 120 (02) : 358 - 363
  • [8] Experimental measurements and modelling of viscosity in CaO-Al2O3-MgO slag system
    Xu, J. -F.
    Zhang, J. -Y.
    Jie, C.
    Ruan, F.
    Chou, K. -C.
    IRONMAKING & STEELMAKING, 2011, 38 (05) : 329 - 337
  • [9] CRYSTALLIZATION OF CAO-AL2O3-SIO2 AND CAO-MGO-AL2O3-SIO2, CAO-ZNO-AL2O3-SIO2 GLASSES
    MONTEIRO, RCC
    GLASSER, FP
    LACHOWSKI, EE
    JOURNAL OF MATERIALS SCIENCE, 1989, 24 (08) : 2839 - 2844
  • [10] Measuring and modelling of density for selected CaO-Al2O3-MgO slags
    Xu, J. F.
    Wan, K.
    Zhang, J. Y.
    Chen, Y.
    Sheng, M. Q.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2015, 115 (08) : 767 - 772