MNEGC: an improved gravity centrality based on node multi-features and network embedding for identifying influential nodes in complex networks

被引:0
|
作者
Lu, Pengli [1 ]
Sun, Lihui [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Gansu, Peoples R China
关键词
complex networks; key nodes; generalized matrix; network embedding; gravity model; SPREADERS; IDENTIFICATION; DIMENSION;
D O I
10.1088/1742-5468/adb4cd
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Identifying influential nodes in complex networks is a highly regarded and challenging problem. The use of gravity models to identify influential nodes has sparked research interest among scholars. However, existing gravity models mostly consider only limited dimensions of nodes and the shortest distance between nodes, which often leads to inaccurate identification. To overcome this problem, we propose a gravity centrality based on node multi-features and network embedding (MNEGC) for identifying key nodes. Firstly, we define the third generalized energy based on the generalized matrix, simultaneously considering the neighborhood coreness and clustering coefficient of nodes, and combining these three metrics to use as the mass of the nodes. Secondly, the Node2vec algorithm is utilized to map the nodes into a low-dimensional vector space and calculate the Euclidean distance between nodes. Finally, the score of the nodes is calculated using the new gravity model. We conduct comparative experiments by comparing the MNEGC algorithm with four gravity models and five state-of-the-art algorithms on nine networks. The experimental results suggest that MNEGC excels in ranking accuracy, monotonicity, imprecision function and precision in identifying the top-10 nodes.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Identifying influential spreaders in complex networks based on network embedding and node local centrality
    Yang, Xu-Hua
    Xiong, Zhen
    Ma, Fangnan
    Chen, Xiaoze
    Ruan, Zhongyuan
    Jiang, Peng
    Xu, Xinli
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 573
  • [2] Identifying influential nodes in complex networks based on improved local gravity model
    Wu, Yongqing
    Tang, Tianchang
    PRAMANA-JOURNAL OF PHYSICS, 2025, 99 (01):
  • [3] Identifying Influential Nodes in Complex Networks Based on Neighborhood Entropy Centrality
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    Zhang, Shuang
    COMPUTER JOURNAL, 2021, 64 (10): : 1465 - 1476
  • [4] Identifying influential nodes in complex networks based on network embedding and local structure entropy
    Lu, Pengli
    Yang, Junxia
    Zhang, Teng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (08):
  • [5] A novel method to identify influential nodes in complex networks based on gravity centrality
    Zhang, Qinyu
    Shuai, Bin
    Lu, Min
    INFORMATION SCIENCES, 2022, 618 : 98 - 117
  • [6] Identifying influential nodes in complex networks based on a spreading influence related centrality
    Chen, Xing
    Tan, Mian
    Zhao, Jing
    Yang, Tinghong
    Wu, Duzhi
    Zhao, Rulan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 536
  • [7] Identifying influential nodes in social networks via improved Laplacian centrality
    Zhu, Xiaoyu
    Hao, Rongxia
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [8] Identifying the influential nodes in complex social networks using centrality-based approach
    Ishfaq, Umar
    Khan, Hikmat Ullah
    Iqbal, Saqib
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9376 - 9392
  • [9] Identifying Influential Nodes in Complex Network Based on Weighted Semi-local Centrality
    Kang, Wenfeng
    Tang, Guangming
    Sun, Yifeng
    Wang, Shuo
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 2467 - 2471
  • [10] A novel method for identifying influential nodes in complex networks based on gravity model
    蒋沅
    杨松青
    严玉为
    童天驰
    代冀阳
    Chinese Physics B, 2022, 31 (05) : 908 - 918