IMPLICIT-EXPLICIT TIME INTEGRATION METHOD FOR FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS

被引:1
|
作者
Ghosh, D. [1 ]
Chauhan, T. [1 ]
Sircar, S. [1 ]
机构
[1] IIIT Delhi, Dept Math, Delhi 110020, India
来源
关键词
Caputo derivative; implicit-explicit time integration; upwind difference scheme; Rouse polymer melt; Zimm chain solution; LIQUID-CRYSTAL POLYMERS; FLOW; DYNAMICS; APPROXIMATION; ALGORITHM; SCHEMES;
D O I
10.1017/S1446181124000154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a novel time-asymptotically stable, implicit-explicit, adaptive, time integration method (denoted by the $\theta $ -method) for the solution of the fractional advection-diffusion-reaction (FADR) equations. The spectral analysis of the method (involving the group velocity and the phase speed) indicates a region of favourable dispersion for a limited range of P & eacute;clet number. The numerical inversion of the coefficient matrix is avoided by exploiting the sparse structure of the matrix in the iterative solver for the Poisson equation. The accuracy and the efficacy of the method is benchmarked using (a) the two-dimensional fractional diffusion equation, originally proposed by researchers earlier, and (b) the incompressible, subdiffusive dynamics of a planar viscoelastic channel flow of the Rouse chain melts (FADR equation with fractional time-derivative of order alpha = 1/2) and the Zimm chain solution (alpha = 2/3). Numerical simulations of the viscoelastic channel flow effectively capture the nonhomogeneous regions of high viscosity at low fluid inertia (or the so-called "spatiotemporal macrostructures"), experimentally observed in the flow-instability transition of subdiffusive flows.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Implicit-explicit time integration method for fractional advection-reaction-diffusion equations
    Ghosh, Dipa
    Chauhan, Tanisha
    Sircar, Sarthok
    arXiv, 2023,
  • [2] Implicit-explicit time integration of nonlinear fractional differential equations
    Zhou, Yongtao
    Suzuki, Jorge L.
    Zhang, Chengjian
    Zayernouri, Mohsen
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 (156) : 555 - 583
  • [3] Regularity theory for time-fractional advection-diffusion-reaction equations
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (04) : 947 - 961
  • [4] Convergence and Applications of the Implicit Finite Difference Method for Advection-Diffusion-Reaction Equations
    Pananu, Kanokwan
    Sungnul, Surattana
    Sirisubtawee, Sekson
    Phongthanapanich, Sutthisak
    Sungnul, Surattana (sutthisak.p@cit.kmutnb.ac.th), 1600, International Association of Engineers (47): : 1 - 19
  • [5] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944
  • [6] WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 918 - 944
  • [7] Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations
    Jannelli, Alessandra
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105
  • [8] Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations
    Jiang, Tian
    Zhang, Yong-Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 311 : 22 - 44
  • [9] Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations
    Jiang, Tian
    Zhang, Yong-Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 : 368 - 388
  • [10] Numerical Solutions of Space-Fractional Advection-Diffusion-Reaction Equations
    Salomoni, Valentina Anna Lia
    De Marchi, Nico
    FRACTAL AND FRACTIONAL, 2022, 6 (01)