Deep Learning-based Malicious Energy Attack Detection in Sustainable IoT Network

被引:0
|
作者
Zhang, Xinyu [1 ]
Li, Long [1 ]
Pu, Lina [1 ]
Yang, Jing [2 ]
Wang, Zichen [3 ]
Fu, Rong [4 ]
Jiang, Zhipeng [5 ]
机构
[1] Univ Alabama, Dept Comp Sci, Tuscaloosa, AL 35487 USA
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
[3] TianGong Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
[4] Univ Alabama, Dept Elect & Comp Engn, Tuscaloosa, AL 35487 USA
[5] New Jersey Inst Technol, Dept Mech & Ind Engn, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
IoT security; deep learning; malicious energy attack;
D O I
10.1109/CNC59896.2024.10556280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Through the use of renewable energy, sustainable Internet of Things (IoT) network can significantly enhance its sustainability and scalability. However, it faces a unique security challenge known as malicious energy attack (MEA), which compromises information security by selectively charging nodes to manipulate the routing path in the network. To efficiently counter MEA, we introduce a two-stage deep learning framework to accurately detect the presence of MEA. It is composed of a stacked residual network (SR-Net) for classification and a stacked LSTM network (SL-Net) for prediction. This model is capable of determining whether an IoT network is under MEA attacks and identifying the affected nodes. Our experimental results verify the efficacy of our proposed model, with the SR-Net demonstrating an average binary cross entropy of less than 0.0590, and the SL-Net showcasing an average mean-square error of approximately 0.0215. These results suggest a high degree of accuracy in detecting MEAs, underscoring the potential of our approach in fortifying the security of sustainable IoT networks.
引用
收藏
页码:417 / 422
页数:6
相关论文
共 50 条
  • [1] Deep Learning-Based Malicious Account Detection in the Momo Social Network
    Wang, Jiaqi
    He, Xinlei
    Gong, Qingyuan
    Chen, Yang
    Wang, Tianyi
    Wang, Xin
    2018 27TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN), 2018,
  • [2] Deep Learning-Based Malicious Smart Contract and Intrusion Detection System for IoT Environment
    Shah, Harshit
    Shah, Dhruvil
    Jadav, Nilesh Kumar
    Gupta, Rajesh
    Tanwar, Sudeep
    Alfarraj, Osama
    Tolba, Amr
    Raboaca, Maria Simona
    Marina, Verdes
    MATHEMATICS, 2023, 11 (02)
  • [3] Enhancing trustworthiness among iot network nodes with ensemble deep learning-based cyber attack detection
    Malathi, S.
    Begum, S. Razool
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [4] Network Flow based IoT Botnet Attack Detection using Deep Learning
    Sriram, S.
    Vinayakumar, R.
    Alazab, Mamoun
    Soman, K. P.
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 189 - 194
  • [5] Unsupervised ensemble based deep learning approach for attack detection in IoT network
    Ahmad, Mir Shahnawaz
    Shah, Shahid Mehraj
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (27):
  • [6] Design of IoT Network using Deep Learning-based Model for Anomaly Detection
    Varalakshmi, Sudha
    Premnath, S. P.
    Yogalakshmi, V
    Vijayalakshmi, P.
    Kavitha, V. R.
    Vimalarani, G.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 216 - 220
  • [7] Deep Learning-based Intrusion Detection for IoT Networks
    Ge, Mengmeng
    Fu, Xiping
    Syed, Naeem
    Baig, Zubair
    Teo, Gideon
    Robles-Kelly, Antonio
    2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 256 - 265
  • [8] An Intelligent Detection of Malicious Intrusions in IoT Based on Machine Learning and Deep Learning Techniques
    Iftikhar, Saman
    Khan, Danish
    Al-Madani, Daniah
    Alheeti, Khattab M. Ali
    Fatima, Kiran
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (03) : 288 - 307
  • [9] Machine Learning-based Multiple Attack Detection in RPL over IoT
    Momand, Mohammad Dawood
    Mohsin, Mohabbat Khan
    Ihsanulhaq
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [10] Deep Transfer Learning for IoT Attack Detection
    Vu, Ly
    Quang Uy Nguyen
    Nguyen, Diep N.
    Dinh Thai Hoang
    Dutkiewicz, Eryk
    IEEE ACCESS, 2020, 8 : 107335 - 107344