Nonlocal multiqubit quantum gates via a driven cavity

被引:1
|
作者
Jandura, Sven [1 ,2 ,3 ]
Srivastava, Vineesha [1 ,2 ,3 ]
Pecorari, Laura [1 ,2 ,3 ]
Brennen, Gavin K. [4 ]
Pupillo, Guido [1 ,2 ,3 ]
机构
[1] Univ Strasbourg, F-67000 Strasbourg, France
[2] CNRS, CESQ, F-67000 Strasbourg, France
[3] ISIS, aQCess, UMR 7006, F-67000 Strasbourg, France
[4] Macquarie Univ, Ctr Engn Quantum Syst, Sch Math & Phys Sci, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
MULTIPARTICLE ENTANGLEMENT; DECOHERENCE; TRANSPORT; QUBIT;
D O I
10.1103/PhysRevA.110.062610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present two protocols for realizing deterministic nonlocal multiqubit quantum gates on qubits coupled to a common cavity mode. The protocols rely only on a classical drive of the cavity mode, while no external drive of the qubits is required. Applied to just two qubits, both protocols provide a universal gate set for quantum computing, together with single-qubit gates. In the first protocol, the state of the cavity follows a closed trajectory in phase space and accumulates a geometric phase depending on the state of the qubits. This geometric phase gate can be used together with global single-qubit gates to generate high-fidelity Greenberger-Horne-Zeilinger (GHZ) states. The second protocol uses an adiabatic evolution of the combined qubit-cavity system to accumulate a dynamical phase. Repeated applications of this protocol allow for the realization of a family of phase gates with arbitrary phases, e.g., phase-rotation gates and multi-controlled-Z gates. For both protocols, we provide analytic solutions for the error rates, which scale as similar to N/root C in the presence of relevant losses, with C the cooperativity and N the qubit number. Our protocols are applicable to a variety of systems and can be generalized by replacing the cavity by a different bosonic mode, such as a phononic mode. We provide estimates of gate fidelities and durations for atomic and molecular qubits as well as superconducting fluxonium qubits coupled to optical or microwave cavities, and we outline implications for quantum error correction.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Robust and fast geometric quantum computation with multiqubit gates in cavity QED
    Lin, Gong-Wei
    Zou, Xu-Bo
    Lin, Xiu-Min
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [2] Speed limits for quantum gates in multiqubit systems
    Ashhab, S.
    de Groot, P. C.
    Nori, Franco
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [3] Multiqubit logic gates in NMR quantum computing
    Price, MD
    Havel, TF
    Cory, DG
    NEW JOURNAL OF PHYSICS, 2000, 2 : 101 - 109
  • [4] Nonlocal gate of quantum network via cavity quantum electrodynamics
    Zhou, XF
    Zhang, YS
    Guo, GC
    PHYSICAL REVIEW A, 2005, 71 (06):
  • [5] Multiqubit quantum logical gates between distant quantum modules in a network
    Xu, Shufeng
    Mao, Ya-Li
    Feng, Lixin
    Chen, Hu
    Guo, Bixiang
    Liu, Shiting
    Li, Zheng-Da
    Fan, Jingyun
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [6] QUANTUM GATES VIA CONTINUOUS TIME QUANTUM WALKS IN MULTIQUBIT SYSTEMS WITH NON-LOCAL AUXILIARY STATES
    Solenov, Dmitry
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (5-6) : 415 - 455
  • [7] Native multiqubit Toffoli gates on ion trap quantum computers
    Goel, Nilesh
    Freericks, J. K.
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
  • [8] Linear-depth quantum circuits for multiqubit controlled gates
    da Silva, Adenilton J.
    Park, Daniel K.
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [9] Randomized Benchmarking of Multiqubit Gates
    Gaebler, J. P.
    Meier, A. M.
    Tan, T. R.
    Bowler, R.
    Lin, Y.
    Hanneke, D.
    Jost, J. D.
    Home, J. P.
    Knill, E.
    Leibfried, D.
    Wineland, D. J.
    PHYSICAL REVIEW LETTERS, 2012, 108 (26)
  • [10] Quantum circuits for general multiqubit gates -: art. no. 130502
    Möttönen, M
    Vartiainen, JJ
    Bergholm, V
    Salomaa, MM
    PHYSICAL REVIEW LETTERS, 2004, 93 (13) : 130502 - 1