A MODIFIED U-NET FOR OIL SPILL SEMANTIC SEGMENTATION IN SAR IMAGES

被引:0
|
作者
Chang, Lena [1 ,2 ]
Chen, Yi-Ting [3 ]
Chang, Yang-Lang [4 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Commun Nav & Control Engn, Keelung, Taiwan
[2] Natl Taiwan Ocean Univ, Intelligent Maritime Res IMRC, Keelung, Taiwan
[3] Natl Taiwan Ocean Univ, Dept Elect Engn, Keelung, Taiwan
[4] Natl Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
关键词
SAR; oil spills; look-alikes; segmentation;
D O I
10.1109/IGARSS53475.2024.10642291
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Oil spills are considered one of the major threats to the marine and coastal environment. Synthetic aperture radar (SAR) sensors are frequently employed for this purpose due to their ability to operate effectively under various weather and illumination conditions. SAR can clearly capture oil spills with distinctive radar backscatter intensity, resulting in dark regions in the images. This characteristic enables the monitoring and automatic detection of oil spills in SAR imagery. U-Net stands as one of the commonly employed semantic segmentation models, known for its ability to achieve superior segmentation performance even with limited training data. In this study, a modified lightweight U-Net model was introduced to enhance the performance of maritime multi-class segmentation in SAR images. First, a lightweight MobileNetv3 model served as the backbone for the U-Net encoder to perform feature extraction. Secondly, the convolutional block attention module (CBAM) was employed to enhance the network's capability in extracting multiscale features and to expedite the module calculation speed. The experimental results showed that the detection accuracy of the proposed method can achieve 77.07% of the mean Intersection-Over-Union ( mIOU). Compared with the original U-Net model, the proposed architecture can improve the mIOU about 4.88%.
引用
收藏
页码:2945 / 2948
页数:4
相关论文
共 50 条
  • [1] Group Equivariant U-Net for the Semantic Segmentation of SAR Images
    Turkmenli, Ilter
    Aptoula, Erchan
    Kayabol, Koray
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [2] Modified U-Net architecture for semantic segmentation of diabetic retinopathy images
    Sambyal, Nitigya
    Saini, Poonam
    Syal, Rupali
    Gupta, Varun
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1094 - 1109
  • [3] Semantic Segmentation using Modified U-Net for Autonomous Driving
    Sugirtha, T.
    Sridevi, M.
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 831 - 837
  • [4] A DEEP NEURAL NETWORK FOR OIL SPILL SEMANTIC SEGMENTATION IN SAR IMAGES
    Orfanidis, Georgios
    Ioannidis, Konstantinos
    Avgerinakis, Konstantinos
    Vrochidis, Stefanos
    Kompatsiaris, Ioannis
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3773 - 3777
  • [5] Detection of artificial spots in fundus images using modified U-Net based semantic segmentation
    Parashar, Anuj Kumar
    Kumar, Bambam
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [6] A modified U-Net with a specific data argumentation method for semantic segmentation of weed images in the field*
    Zou, Kunlin
    Chen, Xin
    Wang, Yonglin
    Zhang, Chunlong
    Zhang, Fan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 187
  • [7] SEMANTIC SEGMENTATION OF UAV IMAGES BASED ON U-NET IN URBAN AREA
    Majidizadeh, A.
    Hasani, H.
    Jafari, M.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 451 - 457
  • [8] An improved U-Net method for the semantic segmentation of remote sensing images
    Zhongbin Su
    Wei Li
    Zheng Ma
    Rui Gao
    Applied Intelligence, 2022, 52 : 3276 - 3288
  • [9] An improved U-Net method for the semantic segmentation of remote sensing images
    Su, Zhongbin
    Li, Wei
    Ma, Zheng
    Gao, Rui
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3276 - 3288
  • [10] YAMU: Yet Another Modified U-Net Architecture for Semantic Segmentation
    Samanta, Pranab
    Singhal, Nitin
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1019 - 1033