Building Change Detection Based on Fully Convolutional Network in High-Resolution Remote Sensing Images

被引:0
|
作者
Wang, Wei [1 ]
Xia, Luocheng [1 ]
Wang, Xin [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
关键词
Fully convolution; Building change detection; Remote sensing image;
D O I
10.1007/978-981-97-5591-2_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To deal with the issues of rough boundaries of varying objects and loss of tiny objects in building change detection, we design a fully convolutional-based building change detection method (BFFGNet). Initially, to capture the fine difference features at various scales, the Feature Difference Enhancement (FDE) module is proposed for enhancing interaction of information between the bi-temporal features. Then, for extracting accurate boundary information and making the edges of altered areas clearer, we propose the Boundary Feature Compensation (BFC) module to make up for the boundary information that is lost due to network deepening, and the boundary enhanced multi-level characteristics are merged by the Multi-Scale Feature Aggregation (MSFA) module to generate change guide map that contains more semantic and detail information. Finally, the extracted change guide map is utilized as prior information for directing the distinct level feature integration using the Change Guide Module (CGM), which enhances model's capacity to identify complete buildings and small targets. To demonstrate the model's effectiveness, it was tested on two large remote sensing building change detection datasets, theWHU-CD and LEVIR-CD datasets. Study shows that compared to sub-optimal network, the IoUscores of BFFGNet on these two datasets are raised by 0.85% and 2.86%, respectively, and BFFGNet significantly outperforms the comparative state-of-the-art (SOTA) methods.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 50 条
  • [1] Classification of High-Resolution Remote Sensing Images in the Feilaixia Reservoir Based on a Fully Convolutional Network
    Wu, Pinghao
    Zhong, Kaiwen
    Hu, Hongda
    Xu, Jianhui
    Wang, Yunpeng
    Zhao, Yi
    IEEE ACCESS, 2020, 8 : 161752 - 161764
  • [2] BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction From High-Resolution Remote Sensing Images
    Shao, Zhenfeng
    Tang, Penghao
    Wang, Zhongyuan
    Saleem, Nayyer
    Yam, Sarath
    Sommai, Chatpong
    REMOTE SENSING, 2020, 12 (06)
  • [3] A hierarchical progressive recognition network for building change detection in high-resolution remote sensing images
    Liu, Zhihuan
    Yang, Zaichun
    Ren, Tingting
    Wang, Zhenzhen
    Deng, Jinsheng
    Deng, Chenxi
    Zhao, Hongmin
    Zhou, Guoxiong
    Chen, Aibin
    Li, Liujun
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2025, 40 (02) : 243 - 262
  • [4] A Combined Loss-Based Multiscale Fully Convolutional Network for High-Resolution Remote Sensing Image Change Detection
    Li, Xinghua
    He, Meizhen
    Li, Huifang
    Shen, Huanfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Feature pyramid fully convolutional network for small and medium object detection in high-resolution remote sensing images
    Zhu, Yaoxuan
    Yang, Hua
    Zhu, Bin
    Xie, Bo
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [6] Change Detection of Surface Water in Remote Sensing Images Based on Fully Convolutional Network
    Song, Ahram
    Kim, Yeji
    Kim, Yongil
    JOURNAL OF COASTAL RESEARCH, 2019, : 426 - 430
  • [7] Building Change Detection in High-Resolution Remote-Sensing Images Based on Deep Learning
    Han Xing
    Han Ling
    Li Liangzhi
    Li Huihui
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (10)
  • [8] A Siamese Multiscale Attention Decoding Network for Building Change Detection on High-Resolution Remote Sensing Images
    Chen, Yao
    Zhang, Jindou
    Shao, Zhenfeng
    Huang, Xiao
    Ding, Qing
    Li, Xianyi
    Huang, Youju
    REMOTE SENSING, 2023, 15 (21)
  • [9] AGCDetNet:An Attention-Guided Network for Building Change Detection in High-Resolution Remote Sensing Images
    Song, Kaiqiang
    Jiang, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4816 - 4831
  • [10] Target Detection of High-Resolution Remote Sensing Images Based on Convolutional Neural Network with Salient Features
    Yang, Chen
    Zhang, Xiuying
    Zhao, Qiulan
    Bao, Bowen
    Jing, Yang
    Bin, Li
    Zhou, Ruiyi
    CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, 2025,