Augmenting Safety-Critical Driving Scenarios while Preserving Similarity to Expert Trajectories

被引:0
|
作者
Mirkhani, Hamidreza [1 ]
Khamidehi, Behzad [1 ]
Rezaee, Kasra [1 ]
机构
[1] Huawei Technol Canada, Noahs Ark Lab, Markham, ON, Canada
关键词
Deep Learning; Trajectory Augmentation; Safety Critical Scenarios; Autonomous Driving; Closed-Loop Performance;
D O I
10.1109/IV55156.2024.10588830
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory augmentation serves as a means to mitigate distributional shift in imitation learning. However, imitating trajectories that inadequately represent the original expert data can result in undesirable behaviors, particularly in safety-critical scenarios. We propose a trajectory augmentation method designed to maintain similarity with expert trajectory data. To accomplish this, we first cluster trajectories to identify minority yet safety-critical groups. Then, we combine the trajectories within the same cluster through geometrical transformation to create new trajectories. These trajectories are then added to the training dataset, provided that they meet our specified safety-related criteria. Our experiments exhibit that training an imitation learning model using these augmented trajectories can significantly improve closed-loop performance.
引用
收藏
页码:2085 / 2090
页数:6
相关论文
共 50 条
  • [1] AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles
    Wang, Jingkang
    Pun, Ava
    Tu, James
    Manivasagam, Sivabalan
    Sadat, Abbas
    Casas, Sergio
    Ren, Mengye
    Urtasun, Raquel
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9904 - 9913
  • [2] CMTS: A Conditional Multiple Trajectory Synthesizer for Generating Safety-Critical Driving Scenarios
    Ding, Wenhao
    Xu, Mengdi
    Zhao, Ding
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 4314 - 4321
  • [3] Safedrive dreamer: Navigating safety-critical scenarios in autonomous driving with world models
    Li, Haitao
    Peng, Tao
    Wang, Bangan
    Zhang, Ronghui
    Gao, Bolin
    Qiao, Ningguo
    Guan, Zhiwei
    Li, Jiayin
    Shi, Tianyu
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 111 : 92 - 106
  • [4] KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
    Hanselmann, Niklas
    Renz, Katrin
    Chitta, Kashyap
    Bhattacharyya, Apratim
    Geiger, Andreas
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 335 - 352
  • [5] Fast Distributed Agreements and Safety-Critical Scenarios in VANETs
    Le Lann, Gerard
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2016, : 200 - 206
  • [6] Towards Realistic, Safety-Critical and Complete Test Case Catalogs for Safe Automated Driving in Urban Scenarios
    Thal, Silvia
    Wallis, Philip
    Henze, Roman
    Hasegawa, Ryo
    Nakamura, Hiroki
    Kitajima, Sou
    Abe, Genya
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [7] Automatically Learning Fallback Strategies with Model-Free Reinforcement Learning in Safety-Critical Driving Scenarios
    Lecerf, Ugo U. L.
    Yemdji-Tchassi, Christelle C. Y.
    Aubert, Sebastien S. A.
    Michiardi, Pietro P. M.
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 209 - 215
  • [8] Suicidal Pedestrian: Generation of Safety-Critical Scenarios for Autonomous Vehicles
    Yang, Yuhang
    Kujanpaa, Kalle
    Babadi, Amin
    Pajarinen, Joni
    Ilin, Alexander
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 1983 - 1988
  • [9] Learning to Collide: An Adaptive Safety-Critical Scenarios Generating Method
    Ding, Wenhao
    Chen, Baiming
    Xu, Minjun
    Zhao, Ding
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 2243 - 2250
  • [10] Personalized Driving Styles in Safety-Critical Scenarios for Autonomous Vehicles: An Approach Using Driver-in-the-Loop Simulations
    Buzdugan, Ioana-Diana
    Butnariu, Silviu
    Rosu, Ioana-Alexandra
    Pridie, Andrei-Cristian
    Antonya, Csaba
    VEHICLES, 2023, 5 (03): : 1149 - 1166