(1) Objective: As light propagates through water, it undergoes significant attenuation and scattering, causing underwater images to experience color distortion and exhibit a bluish or greenish tint. Additionally, suspended particles in the water further degrade image quality. This paper proposes an improved U-Net network model for underwater image enhancement to generate high-quality images. (2) Method: Instead of incorporating additional complex modules into enhancement networks, we opted to simplify the classic U-Net architecture. Specifically, we replaced the standard convolutions in U-Net with our self-designed efficient basic block, which integrates a simplified channel attention mechanism. Moreover, we employed Layer Normalization to enhance the capability of training with a small number of samples and used the GELU activation function to achieve additional benefits in image denoising. Furthermore, we introduced the SK fusion module into the network to aggregate feature information, replacing traditional concatenation operations. In the experimental section, we used the "Underwater ImageNet" dataset from "Enhancing Underwater Visual Perception (EUVP)" for training and testing. EUVP, established by Islam et al., is a large-scale dataset comprising paired images (high-quality clear images and low-quality blurry images) as well as unpaired underwater images. (3) Results: We compared our proposed method with several high-performing traditional algorithms and deep learning-based methods. The traditional algorithms include He, UDCP, ICM, and ULAP, while the deep learning-based methods include CycleGAN, UGAN, UGAN-P, and FUnIEGAN. The results demonstrate that our algorithm exhibits outstanding competitiveness on the underwater imagenet-dataset. Compared to the currently optimal lightweight model, FUnIE-GAN, our method reduces the number of parameters by 0.969 times and decreases Floating-Point Operations Per Second (FLOPS) by more than half. In terms of image quality, our approach achieves a minimal UCIQE reduction of only 0.008 while improving the NIQE by 0.019 compared to state-of-the-art (SOTA) methods. Finally, extensive ablation experiments validate the feasibility of our designed network. (4) Conclusions: The underwater image enhancement algorithm proposed in this paper significantly reduces model size and accelerates inference speed while maintaining high processing performance, demonstrating strong potential for practical applications.