Pigments are known for their vital roles in the growth and development of plants and microbes. In addition, they are also an imperative component of several industries, including textiles, foods, and pharmaceuticals, owing to their immense colours and therapeutic potential. Conventionally, pigments are obtained from plant resources, and the advent of in-vitro propagation techniques boosted the massive production. However, it could not meet the booming demand, leading to the incorporation of new genetic engineering tools. This review focuses on the role of various genetic engineering techniques in enhancing pigment production in plants and microorganisms. It also critically analyzes the efficacy and bottlenecks of these techniques in augmenting pigment biosynthesis. Furthermore, the use of microbes as pigment biofactories and the prospects in the field of genome editing to augment pigment synthesis are discussed. The limitations in the existing techniques underline the need for advanced genome editing strategies to broaden the mass production of pigments to meet the surging needs.