Fine-grained Automatic Augmentation for handwritten character recognition

被引:0
|
作者
Chen, Wei
Su, Xiangdong [1 ]
Hou, Hongxu
机构
[1] Inner Mongolia Univ, Coll Comp Sci, Hohhot, Peoples R China
基金
中国国家自然科学基金;
关键词
Data automatic augmentation; Handwritten character recognition; B & eacute; zier curve; Bayesian optimization; ALGORITHM;
D O I
10.1016/j.patcog.2024.111079
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advancement of deep learning-based character recognition models, the training data size has become a crucial factor in improving the performance of handwritten text recognition. For languages with low-resource handwriting samples, data augmentation methods can effectively scale up the data size and improve the performance of handwriting recognition models. However, existing data augmentation methods for handwritten text face two limitations: (1) Methods based on global spatial transformations typically augment the training data by transforming each word sample as a whole but ignore the potential to generate fine-grained transformation from local word areas, limiting the diversity of the generated samples; (2) It is challenging to adaptively choose a reasonable augmentation parameter when applying these methods to different language datasets. To address these issues, this paper proposes Fine-grained Automatic Augmentation (FgAA) for handwritten character recognition. Specifically, FgAA views each word sample as composed of multiple strokes and achieves data augmentation by performing fine-grained transformations on the strokes. Each word is automatically segmented into various strokes, and each stroke is fitted with a B & eacute;zier curve. On such a basis, we define the augmentation policy related to the fine-grained transformation and use Bayesian optimization to select the optimal augmentation policy automatically, thereby achieving the automatic augmentation of handwriting samples. Experiments on seven handwriting datasets of different languages demonstrate that FgAA achieves the best augmentation effect for handwritten character recognition. Our code is available at https://github.com/IMU-MachineLearningSXD/Fine-grained-Automatic-Augmentation
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fine-Grained Recognition With Learnable Semantic Data Augmentation
    Pu, Yifan
    Han, Yizeng
    Wang, Yulin
    Feng, Junlan
    Deng, Chao
    Huang, Gao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 3130 - 3144
  • [2] Fine-Grained Crowdsourcing for Fine-Grained Recognition
    Jia Deng
    Krause, Jonathan
    Li Fei-Fei
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 580 - 587
  • [3] Automatic fine-grained glomerular lesion recognition in kidney pathology
    Nan, Yang
    Li, Fengyi
    Tang, Peng
    Zhang, Guyue
    Zeng, Caihong
    Xie, Guotong
    Liu, Zhihong
    Yang, Guang
    PATTERN RECOGNITION, 2022, 127
  • [4] AUTOMATIC FINE-GRAINED FOOD RECOGNITION USING ARTIFICIAL INTELLIGENCE
    Papathanail, I.
    Bez, N.
    Rahman, L. Abdur
    Brigato, L.
    Van Der Horst, K.
    Mougiakakou, S.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2023, 25 : A204 - A204
  • [5] Commonsense Oriented Fine-Grained Data Augmentation
    Li, Huachao
    Kang, Bin
    Wang, Lei
    Computer Engineering and Applications, 2024, 60 (06) : 214 - 221
  • [6] Towards Fine-Grained Recognition: Joint Learning for Object Detection and Fine-Grained Classification
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT II, 2019, 11845 : 332 - 344
  • [7] FINE-GRAINED AND LAYERED OBJECT RECOGNITION
    Wu, Yang
    Zheng, Nanning
    Liu, Yuanliu
    Yuan, Zejian
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (02)
  • [8] SELECTIVE PARTS FOR FINE-GRAINED RECOGNITION
    Li, Dong
    Li, Yali
    Wang, Shengjin
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 922 - 926
  • [9] Deep LSAC for Fine-Grained Recognition
    Lin, Di
    Wang, Yi
    Liang, Lingyu
    Li, Ping
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (01) : 200 - 214
  • [10] FgER: Fine-Grained Entity Recognition
    Abhishek
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8008 - 8009