Weighted Least-Squares PARSIM

被引:0
|
作者
He, Jiabao [1 ]
Rojas, Cristian R. [1 ]
Hjalmarsson, Hakan [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, S-10044 Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 15期
基金
瑞典研究理事会;
关键词
Subspace identification; ARX model; Markov parameters; weighted least-squares; ASYMPTOTIC PROPERTIES; SUBSPACE; IDENTIFICATION; CONSISTENCY;
D O I
10.1016/j.ifacol.2024.08.550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Subspace identification methods (SIMs) have proven very powerful for estimating linear state-space models. To overcome the deficiencies of classical SIMs, a significant number of algorithms has appeared over the last two decades, where most of them involve a common intermediate step, that is to estimate the range space of the extended observability matrix. In this contribution, an optimized version of the parallel and parsimonious SIM (PARSIM), PARSIM(opt), is proposed by using weighted least-squares. It not only inherits all the benefits of PARSIM but also attains the best linear unbiased estimator for the above intermediate step. Furthermore, inspired by SIMs based on the predictor form, consistent estimates of the optimal weighting matrix for weighted least-squares are derived. Essential similarities, differences and simulated comparisons of some key SIMs related to our method are also presented. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
引用
收藏
页码:330 / 335
页数:6
相关论文
共 50 条
  • [1] NONOPTIMALLY WEIGHTED LEAST-SQUARES
    BLOCH, DA
    MOSES, LE
    AMERICAN STATISTICIAN, 1988, 42 (01): : 50 - 53
  • [2] WEIGHTED LEAST-SQUARES AND TRACKING
    BERCU, B
    DUFLO, M
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1992, 28 (03): : 403 - 430
  • [3] CONVERGENCE ANALYSIS OF WEIGHTED LEAST-SQUARES AND FAST DECOUPLED WEIGHTED LEAST-SQUARES STATE ESTIMATION
    SIRISENA, HR
    BROWN, EPM
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1984, 6 (02) : 75 - 78
  • [4] ITERATIVE WEIGHTED LEAST-SQUARES ESTIMATORS
    CHEN, JH
    SHAO, J
    ANNALS OF STATISTICS, 1993, 21 (02): : 1071 - 1092
  • [5] JACKKNIFING WEIGHTED LEAST-SQUARES ESTIMATORS
    SHAO, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1989, 51 (01): : 139 - 156
  • [6] ORDINARY AND WEIGHTED LEAST-SQUARES ESTIMATORS
    SHAO, J
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1990, 18 (04): : 327 - 336
  • [7] HYDROLOGIC REGRESSION WITH WEIGHTED LEAST-SQUARES
    TASKER, GD
    WATER RESOURCES RESEARCH, 1980, 16 (06) : 1107 - 1113
  • [8] REGRESSION, CURVATURE AND WEIGHTED LEAST-SQUARES
    GREEN, PJ
    MATHEMATICAL PROGRAMMING, 1988, 42 (01) : 41 - 51
  • [9] Optimally weighted least-squares steganalysis
    Ker, Andrew D.
    SECURITY, STEGANOGRAPHY, AND WATERMARKING OF MULTIMEDIA CONTENTS IX, 2007, 6505
  • [10] A weighted least-squares method for PET
    Anderson, JMM
    Mair, BA
    Rao, ML
    Wu, CH
    1995 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD, VOLS 1-3, 1996, : 1292 - 1296