Parrot optimization algorithm for improved multi-strategy fusion for feature optimization of data in medical and industrial field

被引:0
|
作者
Huang, Gaoxia [1 ]
Wei, Jianan [1 ]
Yuan, Yage [1 ]
Huang, Haisong [1 ,2 ]
Chen, Hualin [1 ]
机构
[1] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Equipment Mfg Digital Workshop Modeling &, Guiyang 550025, Guizhou, Peoples R China
关键词
Medical-industrial data; Feature preference; Multi-strategy fusion; Improved parrot optimization; Classification; FEATURE-SELECTION; GENETIC ALGORITHM;
D O I
10.1016/j.swevo.2025.101908
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is crucial in machine learning, data mining and pattern recognition, aiming at refining data features and improving model performance. Data features in the medical-industrial field are numerous and often contain redundant and irrelevant information, which affects model efficiency and generalization ability. Given that the superior performance of meta-heuristic algorithms in dealing with complex constrained problems has been demonstrated and many researchers have used them for feature selection to process data with better results than traditional methods, this study innovatively proposes an improved Multi-Strategy Fused Parrot Optimization Algorithm (MIPO) to optimize the feature selection process targeting the medical-industrial data. MIPO incorporates four core mechanisms: first, balanced and optimized foraging behavior to pinpoint key features; second, lens imaging reverse dwell behavior to strengthen local search; third, vertical and horizontal crosscommunication behavior to promote population co-evolution; and fourth, memory behavior to intelligently guide the search direction. In addition, the pacifying behavior strategy is introduced to enhance the stability and robustness of the algorithm in complex space. To fully validate MIPO, this paper designs exhaustive experiments, including ablation experiments, experiments comparing with mainstream algorithms and comparisons with other feature selection methods, to demonstrate its superior performance in multiple dimensions. Based on the S/V transfer function, nine binary variants are constructed to cope with the challenge of diverse feature selection. The experimental results show that MIPO and its variants exhibit efficient, general and strong generalization capabilities on 23 medical-industrial datasets. Further, by combining KNN, SVM, and RF classifiers, MIPO significantly improves the model accuracy, with average improvement rates of 55.38%, 35.53%, and 49.59%, respectively, compared with the original parrot algorithm, and the optimal variant also performs well on all types of classifiers, with average improvement rates of 53.91%, 34.38%, and 49.94% for the optimal variant, proving the wide applicability of MIPO. In this study, the adaptability of MIPO and classifiers is deeply explored to provide scientific guidance and practical suggestions for practical applications, which not only promotes the technological progress in the field of feature selection, but also provides a powerful tool for data processing and analysis in the field of medical and industrial.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Improved Osprey Optimization Algorithm with Multi-Strategy Fusion
    Lei, Wenli
    Han, Jinping
    Wu, Xinghao
    BIOMIMETICS, 2024, 9 (11)
  • [2] A Multi-Strategy Parrot Optimization Algorithm and Its Application
    Yang, Yang
    Fu, Maosheng
    Zhou, Xiancun
    Jia, Chaochuan
    Wei, Peng
    BIOMIMETICS, 2025, 10 (03)
  • [3] IOOA: A multi-strategy fusion improved Osprey Optimization Algorithm for global optimization
    Wen, Xiaodong
    Liu, Xiangdong
    Yu, Cunhui
    Gao, Haoning
    Wang, Jing
    Liang, Yongji
    Yu, Jiangli
    Bai, Yan
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 2033 - 2074
  • [4] Dung Beetle Optimization Algorithm Based on Improved Multi-Strategy Fusion
    Fang, Rencheng
    Zhou, Tao
    Yu, Baohua
    Li, Zhigang
    Ma, Long
    Zhang, Yongcai
    ELECTRONICS, 2025, 14 (01):
  • [5] Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection
    Chen, Tian
    Yi, Yuanyuan
    BIOMIMETICS, 2024, 9 (11)
  • [6] Multi-strategy Improved Kepler Optimization Algorithm
    Ma, Haohao
    Liao, Yuxin
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 296 - 308
  • [7] A Multi-strategy Improved Fireworks Optimization Algorithm
    Zou, Pengcheng
    Huang, Huajuan
    Wei, Xiuxi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 97 - 111
  • [8] Multi-strategy Improved Seagull Optimization Algorithm
    Li, Yancang
    Li, Weizhi
    Yuan, Qiuyu
    Shi, Huawang
    Han, Muxuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [9] A Multi-Strategy Improved Arithmetic Optimization Algorithm
    Liu, Zhilei
    Li, Mingying
    Pang, Guibing
    Song, Hongxiang
    Yu, Qi
    Zhang, Hui
    SYMMETRY-BASEL, 2022, 14 (05):
  • [10] Multi-strategy Improved Seagull Optimization Algorithm
    Yancang Li
    Weizhi Li
    Qiuyu Yuan
    Huawang Shi
    Muxuan Han
    International Journal of Computational Intelligence Systems, 16