Multi-agent reinforcement learning for task offloading with hybrid decision space in multi-access edge computing

被引:2
|
作者
Wang, Ji [1 ]
Zhang, Miao [1 ]
Yin, Quanjun [1 ]
Yin, Lujia [1 ]
Peng, Yong [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Hunan, Peoples R China
关键词
Multi-access edge computing; Multiagent proximal policy optimization (MAPPO); Hybrid action space; Reward design; Task offloading;
D O I
10.1016/j.adhoc.2024.103671
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-access Edge Computing (MEC) has become a significant technology for supporting the computation-intensive and time-sensitive applications on the Internet of Things (IoT) devices. However, it is challenging to jointly optimize task offloading and resource allocation in the dynamic wireless environment with constrained edge resource. In this paper, we investigate a multi-user and multi-MEC servers system with varying task request and stochastic channel condition. Our purpose is to minimize the total energy consumption and time delay by optimizing the offloading decision, offloading ratio and computing resource allocation simultaneously. As the users are geographically distributed within an area, we formulate the problem of task offloading and resource allocation in MEC system as a partially observable Markov decision process (POMDP) and propose a novel multi-agent deep reinforcement learning (MADRL) -based algorithm to solve it. In particular, two aspects have been modified for performance enhancement: (1) To make fine-grained control, we design a novel neural network structure to effectively handle the hybrid action space arisen by the heterogeneous variables. (2) An adaptive reward mechanism is proposed to reasonably evaluate the infeasible actions and to mitigate the instability caused by manual configuration. Simulation results show the proposed method can achieve 7.12%-20.97% performance enhancements compared with the existing approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Dependent Task Offloading in Multi-Access Edge Computing
    Ye, Hengzhou
    Li, Jiaming
    Lu, Qiu
    IEEE ACCESS, 2024, 12 : 166281 - 166297
  • [2] Distributed Multi-Cloud Multi-Access Edge Computing by Multi-Agent Reinforcement Learning
    Zhang, Yutong
    Di, Boya
    Zheng, Zijie
    Lin, Jinlong
    Song, Lingyang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2565 - 2578
  • [3] Large-Scale Computation Offloading Using a Multi-Agent Reinforcement Learning in Heterogeneous Multi-Access Edge Computing
    Gao, Zhen
    Yang, Lei
    Dai, Yu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (06) : 3425 - 3443
  • [4] Computation Offloading with Privacy-Preserving in Multi-Access Edge Computing: A Multi-Agent Deep Reinforcement Learning Approach
    Dai, Xiang
    Luo, Zhongqiang
    Zhang, Wei
    ELECTRONICS, 2024, 13 (13)
  • [5] Cooperative Task Offloading for Multi-Access Edge-Cloud Networks: A Multi-Group Multi-Agent Deep Reinforcement Learning
    Suzuki, Akito
    Kobayashi, Masahiro
    Old, Eiji
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [6] A Survey on Task Offloading in Multi-access Edge Computing
    Islam, Akhirul
    Debnath, Arindam
    Ghose, Manojit
    Chakraborty, Suchetana
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 118
  • [7] Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Distributed Edge Cloud Computing
    Ding, Shiyao
    Lin, Donghui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (05) : 936 - 945
  • [8] Computation Offloading in Multi-Access Edge Computing: A Multi-Task Learning Approach
    Yang, Bo
    Cao, Xuelin
    Bassey, Joshua
    Li, Xiangfang
    Qian, Lijun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (09) : 2745 - 2762
  • [9] Decentralized Offloading Strategies Based on Reinforcement Learning for Multi-Access Edge Computing
    Hu, Chunyang
    Li, Jingchen
    Shi, Haobin
    Ning, Bin
    Gu, Qiong
    INFORMATION, 2021, 12 (09)
  • [10] Task Computation Offloading for Multi-Access Edge Computing via Attention Communication Deep Reinforcement Learning
    Li, Kexin
    Wang, Xingwei
    He, Qiang
    Yang, Mingzhou
    Huang, Min
    Dustdar, Schahram
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2985 - 2999