Microstructure, mechanical properties, and corrosion performance of additively manufactured CoCrFeMnNi high-entropy alloy before and after heat treatment

被引:14
|
作者
Savinov, Roman [1 ]
Shi, Jing [1 ]
机构
[1] Univ Cincinnati, Coll Engn & Appl Sci, Dept Mech & Mat Engn, Cincinnati, OH 45221 USA
来源
关键词
CoCrFeMnNi; High-entropy alloy; Additive manufacturing; Selective laser melting; Properties; Microstructure; IMPACT TOUGHNESS; THERMAL-STABILITY; GRAIN-GROWTH; EVOLUTION; PARAMETERS; STRENGTH; BEHAVIOR; ELEMENTS;
D O I
10.36922/msam.42
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Equiatomic CoCrFeMnNi, one of the well-known high-entropy alloys, possesses attractive mechanical properties for many potential applications. In this research, the effects of heat treatment on additively manufactured CoCrFeMnNi materials were studied. A pilot experiment was conducted to select two selective laser melting (SLM) conditions of different laser scanning speeds based on the density and porosity of obtained materials. Thereafter, microstructure, tensile properties, impact fracture, microhardness, and corrosion resistance were investigated for the materials obtained under the two selected SLM conditions, with and without heat treatment. It was discovered that while the texture with a strong <100> alignment was observed in both as-built and heat treated materials, the texture of heat treated materials was stronger. Also, heat treatment drastically improved the ductility of as-built CoCrFeMnNi by 23 - 59% for the selected SLM conditions, while the ultimate tensile strength showed only negligible change. The increase of ductility was believed to result from the release of residual strain and the increase of average grain size after heat treatment. Moreover, heat treatment was able to bring noticeable improvement in energy absorption for the as-built CoCrFeMnNi, reflected by 11 - 16% more energy absorption. Besides, all studied materials showed signs of ductile fracture, but more signs of brittle fracture, such as cleavage facets, were found in the as-built materials as compared with the heat-treated materials. In addition, higher laser scan speed was found to cause moderate reduction in corrosion resistance. Effect of heat treatment was also negative and mild for lower scanning speed case. However, the highest reduction in corrosion resistance was observed after heat treatment of the high laser scanning speed case.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy
    Melia, Michael A.
    Carroll, Jay D.
    Whetten, Shaun R.
    Esmaeely, Saba N.
    Locke , Jenifer
    White, Emma
    Anderson, Iver
    Chandross, Michael
    Michael, Joseph R.
    Argibay, Nicolas
    Schindelholz, Eric J.
    Kustas, Andrew B.
    ADDITIVE MANUFACTURING, 2019, 29
  • [2] Toward tunable microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy
    Li, Hongge
    Fu, Wujing
    Chen, Tian
    Huang, Yongjiang
    Ning, Zhiliang
    Sun, Jianfei
    Bai, Houyi
    Dai, Xianwu
    Fan, Hongbo
    Ngan, Alfonso H. W.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
  • [3] Dynamic spall properties of an additively manufactured, high-entropy alloy (CoCrFeMnNi)
    Euser, V. K.
    Mangan, A. S.
    Jones, D. R.
    Martinez, D. T.
    Steckley, T. E.
    Agrawal, A. K.
    Thoma, D. J.
    Fensin, S. J.
    MATERIALIA, 2024, 33
  • [4] Microstructure and mechanical properties of an additively manufactured WMoTaNbNiTi refractory high-entropy alloy
    Xiao, Bang
    Xing, Fangzhou
    Jia, Wenpeng
    Wang, Jian
    Wei, Ming
    Zhou, Lian
    INTERMETALLICS, 2024, 169
  • [5] The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy
    Hongge Li
    Yongjiang Huang
    Jianfei Sun
    Yunzhuo Lu
    Journal of Materials Science & Technology, 2021, 77 (18) : 187 - 195
  • [6] The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy
    Li, Hongge
    Huang, Yongjiang
    Sun, Jianfei
    Lu, Yunzhuo
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 77 : 187 - 195
  • [7] Research Advances in Additively Manufactured High-Entropy Alloys: Microstructure, Mechanical Properties, and Corrosion Resistance
    Han, Feng
    Li, Chunyang
    Huang, Jiqiang
    Wang, Jiacai
    Xue, Long
    Wang, Caimei
    Zhang, Yu
    METALS, 2025, 15 (02)
  • [9] Tailoring the microstructure and mechanical property of additively manufactured AlCrCuFeNi3.0 high-entropy alloy through heat treatment
    Luo, Shuncun
    Wang, Zemin
    Nagaumi, Hiromi
    Wu, Zibin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 844
  • [10] Improving mechanical properties of an additively manufactured high-entropy alloy via post thermomechanical treatment
    Zhao, X. J.
    Deng, S.
    Li, J. F.
    Li, C.
    Lei, Y. Z.
    Luo, S. N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984