Perspectives on aqueous organic redox flow batteries

被引:2
|
作者
Zhu, Fulong [1 ]
Chen, Qiliang [1 ]
Fu, Yongzhu [1 ]
机构
[1] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
DURATION ENERGY-STORAGE; LONG-LIFETIME; ELECTROLYTES; MOLECULE; ANOLYTE; COST; SAFE;
D O I
10.1016/j.gee.2024.08.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous organic redox flow batteries (AORFBs) have pioneered new routes for large-scale energy storage. The tunable nature of redox-active organic molecules provides a robust foundation for creating innovative AORFBs with exceptional performance. Molecular engineering endows various organic molecules with considerable advantages in solubility, stability, and redox potential. Advanced characterizations have enabled a comprehensive understanding of the redox reaction and degradation mechanisms of these organic molecules. Computational chemistry and machine learning have guided the development of new organic molecules. The practical application of AORFBs will depend on the complementary efforts of multiple parties. This paper consolidates the current design principles of molecular engineering, degradation mechanisms, characterization techniques, and the utilization of computational chemistry. It also offers perspectives and forecasts the necessary attributes and strategic efforts for the next-generation AORFBs, aiming to provide the research community with a deeper understanding. (c) 2024 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1641 / 1649
页数:9
相关论文
共 50 条
  • [1] Perspectives on aqueous organic redox flow batteries
    Fulong Zhu
    Qiliang Chen
    Yongzhu Fu
    Green Energy & Enνironment, 2024, 9 (11) : 1641 - 1649
  • [2] Organic aqueous redox flow batteries
    Aziz, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [3] Aqueous organic redox flow batteries
    Singh, Vikram
    Kim, Soeun
    Kang, Jungtaek
    Byon, Hye Ryung
    NANO RESEARCH, 2019, 12 (09) : 1988 - 2001
  • [4] Aqueous organic redox flow batteries
    Vikram Singh
    Soeun Kim
    Jungtaek Kang
    Hye Ryung Byon
    Nano Research, 2019, 12 : 1988 - 2001
  • [5] Organic Electroactive Materials for Aqueous Redox Flow Batteries
    Yang, Gaojing
    Zhu, Yaxun
    Hao, Zhimeng
    Lu, Yong
    Zhao, Qing
    Zhang, Kai
    Chen, Jun
    ADVANCED MATERIALS, 2023, 35 (33)
  • [6] Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries
    Farag, Nadia L.
    Jethwa, Rajesh B.
    Beardmore, Alice E.
    Insinna, Teresa
    O'Keefe, Christopher A.
    Klusener, Peter A. A.
    Grey, Clare P.
    Wright, Dominic S.
    CHEMSUSCHEM, 2023, 16 (13)
  • [7] Aqueous organic and redox-mediated redox flow batteries: a review
    Gentil, Solene
    Reynard, Danick
    Girault, Hubert H.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 7 - 13
  • [8] Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries
    Zhu, Fulong
    Guo, Wei
    Fu, Yongzhu
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (02)
  • [9] On the Reversibility of Sustainable Symmetric Aqueous Organic Redox Flow Batteries
    Mardi, Saeed
    Ail, Ujwala
    Vagin, Mikhail
    Phopase, Jaywant
    Crispin, Reverant
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024,
  • [10] Organic redox-active molecules for alkaline aqueous redox flow batteries
    Lu, Biao
    Yu, Kaifeng
    Shao, Weide
    Ji, Ya
    Zhang, Feifei
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2024, 47