CNN-Based Device-Agnostic Feature Extraction From ONH OCT Scans

被引:0
|
作者
Driessen, Sjoerd J. [1 ,2 ]
van Garderen, Karin A. [1 ,2 ,3 ]
De Jesus, Danilo Andrade [4 ,5 ,6 ]
Brea, Luisa Sanchez [4 ,5 ,6 ]
Liefers, Bart [1 ,2 ]
Barbosa-Breda, Joao [7 ,8 ,9 ]
Lemij, Hans G. [10 ]
Nelson-Ayifah, Doreen [11 ,12 ]
Ampong, Angelina [11 ]
Bonnemaijer, Pieter W. M. [2 ,10 ]
Thiadens, Alberta A. H. J. [1 ]
Klaver, Caroline C. W. [1 ,2 ,4 ,13 ,14 ]
机构
[1] Erasmus MC, Dept Ophthalmol, Dr Molewaterpl 40, NL-3015 GD Rotterdam, Netherlands
[2] Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands
[3] Rotterdam Eye Hosp, Rotterdam Ophthalm Inst, Rotterdam, Netherlands
[4] Erasmus MC, Univ Med Ctr, Dept Ophthalmol, Rotterdam, Netherlands
[5] Erasmus MC, Univ Med Ctr, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[6] Rotterdam Eye Hosp, Rotterdam Ophthalm Inst, Eye Image Anal Grp Rotterdam, Rotterdam, Netherlands
[7] Katholieke Univ Leuven, Dept Neurosci, Res Grp Ophthalmol, Leuven, Belgium
[8] Univ Porto, Fac Med, Ctr Hlth Technol & Serv Res CINTESIS, Porto, Portugal
[9] Ctr Hosp & Univ Sao Joao, Dept Ophthalmol, Porto, Portugal
[10] Rotterdam Eye Hosp, Glaucoma Serv, Rotterdam, Netherlands
[11] Komfo Anokye Teaching Hosp, Dept Oncol, Kumasi, Ghana
[12] Kwame Nkrumah Univ Sci & Technol, Kumasi, Ghana
[13] Radboud Univ Nijmegen, Med Ctr, Nijmegen, Netherlands
[14] Inst Mol & Clin Ophthalmol, Basel, Switzerland
来源
关键词
optic nerve head; OCT; artificial intelligence; OPTICAL COHERENCE TOMOGRAPHY; SPECTRAL-DOMAIN OCT; LAMINA-CRIBROSA; TIME-DOMAIN; PHANTOM EYE; GLAUCOMA; DEPTH;
D O I
10.1167/tvst.13.12.5
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Optical coherence tomography (OCT)-derived measurements of the optic nerve head (ONH) from different devices are not interchangeable. This poses challenges to patient follow-up and collaborative studies. Here, we present a device-agnostic method for the extraction of OCT biomarkers using artificial intelligence. Methods: ONH-centered OCT volumes from the Heidelberg SPECTRALIS, ZEISS CIRRUS HD-OCT 5000, and Topcon 3D OCT-1000 Mark I/II and 3D OCT-2000 devices were annotated by trained graders. A convolutional neural network (CNN) was trained on these segmented B-scans and utilized to obtain several ONH biomarkers, such as the retinal nerve fiber layer (RNFL) and the minimal rim width (MRW). The CNN results were compared between different devices and to the manufacturer-reported values using an independent test set. Results: The intraclass correlation coefficient (ICC) for the circumpapillary retinal nerve fiber layer (cpRNFL) at 3.4 mm reported by the CIRRUS and 3D OCT-2000 was 0.590 (95% confidence interval [CI], -0.079 to 0.901), and our CNN resulted in a cpRNFL ICC of 0.667 (95% CI, -0.035 to 0.939). The cpRNFL at 3.5 mm on the CIRRUS, 3D OCT-2000, and SPECTRALIS generated by the CNN resulted in an ICC of 0.656 (95% CI, 0.055-0.922). Comparing the global mean MRWs from the SPECTRALIS between CNN and manufacturer yielded an ICC of 0.983 (95% CI, 0.917-0.997). The CNN ICC for the MRW among the CIRRUS, 3D OCT-2000, and SPECTRALIS was 0.917 (95% CI, 0.947- 0.981). Conclusions: Our device-agnostic feature extraction from ONH OCT scans showed a higher reliability than the measures generated by the manufacturers for cpRNFL. MRW measurements compared very well among the manufacturers.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Efficient quantum feature extraction for CNN-based
    Dou, Tong
    Zhang, Guofeng
    Cui, Wei
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (11): : 7438 - 7456
  • [2] Unsupervised Feature Extraction - A CNN-Based Approach
    Trosten, Daniel J.
    Sharma, Puneet
    IMAGE ANALYSIS, 2019, 11482 : 197 - 208
  • [3] A CNN-Based Fusion Method for Feature Extraction from Sentinel Data
    Scarpa, Giuseppe
    Gargiulo, Massimiliano
    Mazza, Antonio
    Gaetano, Raffaele
    REMOTE SENSING, 2018, 10 (02)
  • [4] Device-agnostic glaucoma OCT measurements using a custom trained convolutional neural network
    van Garderen, Karin Alida
    Driessen, Sjoerd Jan
    de Jesus, Danilo Andrade
    Brea, Luisa Sanchez
    Barbosa-Breda, Joao
    Lemij, Hans G.
    Bonnemaijer, Pieter W. M.
    Thiadens, Alberta
    Klaver, Caroline C. W.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [5] Automated body composition estimation from device-agnostic 3D optical scans in pediatric populations
    Tian, Isaac Y.
    Wong, Michael C.
    Nguyen, William M.
    Kennedy, Samantha
    McCarthy, Cassidy
    Kelly, Nisa N.
    Liu, Yong E.
    Garber, Andrea K.
    Heymsfield, Steven B.
    Curless, Brian
    Shepherd, John A.
    CLINICAL NUTRITION, 2023, 42 (09) : 1619 - 1630
  • [6] A device-agnostic shape model for automated body composition estimates from 3D optical scans
    Tian, Isaac Y.
    Wong, Michael C.
    Kennedy, Samantha
    Kelly, Nisa N.
    Liu, Yong E.
    Garber, Andrea K.
    Heymsfield, Steven B.
    Curless, Brian
    Shepherd, John A.
    MEDICAL PHYSICS, 2022, 49 (10) : 6395 - 6409
  • [7] Exploring the Influence of Input Feature Space on CNN-Based Geomorphic Feature Extraction From Digital Terrain Data
    Maxwell, Aaron E.
    Odom, William E.
    Shobe, Charles M.
    Doctor, Daniel H.
    Bester, Michelle S.
    Ore, Tobi
    EARTH AND SPACE SCIENCE, 2023, 10 (05)
  • [8] A CNN-BASED FRAMEWORK FOR AUTOMATIC VITREOUS SEGEMNTATION FROM OCT IMAGES
    Hagagg, S.
    Khalifa, F.
    Abdeltawab, H.
    Elnakib, A.
    Abdelazim, M. M.
    Ghazal, M.
    Sandhu, H.
    El-Baz, A.
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [9] EEGWaveNet: Multiscale CNN-Based Spatiotemporal Feature Extraction for EEG Seizure Detection
    Thuwajit, Punnawish
    Rangpong, Phurin
    Sawangjai, Phattarapong
    Autthasan, Phairot
    Chaisaen, Rattanaphon
    Banluesombatkul, Nannapas
    Boonchit, Puttaranun
    Tatsaringkansakul, Nattasate
    Sudhawiyangkul, Thapanun
    Wilaiprasitporn, Theerawit
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) : 5547 - 5557
  • [10] CNN-based Tree Model Extraction
    Ben Alaya, Karim
    Czuni, Laszlo
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 616 - 620