Kernel-Based Bootstrap Synthetic Data to Estimate Measurement Uncertainty in Analytical Sciences

被引:0
|
作者
Feinberg, Max [1 ]
Clemencon, Stephan [2 ]
Rudaz, Serge [3 ]
Boccard, Julien [3 ]
机构
[1] Labo Stat Consultancy, Paris, France
[2] Telecom ParisTech, Data Sci & AI Digitized Ind & Serv, Palaiseau, France
[3] Univ Geneva, Sch Pharmaceut Sci, Geneva, Switzerland
关键词
measurement uncertainty; smooth bootstrap; synthetic data; uncertainty function; QUANTITATIVE ANALYTICAL PROCEDURES; SFSTP PROPOSAL; VALIDATION; STRATEGIES; HARMONIZATION; INTERVALS;
D O I
10.1002/cem.3628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Measurement uncertainty (MU) is becoming a key figure of merit for analytical methods, and estimating MU from method validation data is cost-effective and practical. Since MU can be defined as a coverage interval of a given result, the computation of statistical prediction intervals is a possible approach, but the quality of the intervals is questionable when the number of available data is reduced. In this context, the bootstrap procedure constitutes an efficient strategy to increase the observed data variability. While applying naive bootstrap to validation data raises some computational challenges, the use of smooth bootstrap is much more interesting when synthetic data are generated using an adapted kernel density estimation algorithm. MU can be directly obtained in a very convenient way as an uncertainty function applicable to any unknown future measurement. This publication presents the advantages and disadvantages of this new method illustrated using diverse in-house and interlaboratory validation data.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models
    Singh, Rishabh
    Principe, Jose C.
    NEURAL COMPUTATION, 2021, 33 (05) : 1164 - 1198
  • [2] A modified bootstrap for kernel-based specification test with heavy-tailed data
    Huang, Ta-Cheng
    Li, Hongjun
    Li, Zheng
    ECONOMICS LETTERS, 2020, 189
  • [3] Kernel-based grouping of histogram data
    Lange, Tilman
    Buhmann, Joachim M.
    MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 632 - +
  • [4] Kernel-Based Analysis of Massive Data
    Mhaskar, Hrushikesh N.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [5] Kernel-Based Semiparametric Estimators: Small Bandwidth Asymptotics and Bootstrap Consistency
    Cattaneo, Matias D.
    Jansson, Michael
    ECONOMETRICA, 2018, 86 (03) : 955 - 995
  • [6] KERNEL-BASED STORM TRACKING IN RADAR DATA
    Picus, C.
    Beleznai, C.
    Nowak, C.
    Ramoser, H.
    Mitterhuber, S.
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 556 - +
  • [7] Kernel-based data fusion for gene prioritization
    De Bie, Tijl
    Tranchevent, Leon-Charles
    Van Oeffelen, Liesbeth M. M.
    Moreau, Yves
    BIOINFORMATICS, 2007, 23 (13) : I125 - I132
  • [8] Kernel-Based Fuzzy Clustering of Interval Data
    Pimentel, Bruno A.
    da Costa, Anderson F. B. F.
    de Souza, Renata M. C. R.
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 497 - 501
  • [9] A kernel-based framework to tensorial data analysis
    Signoretto, Marco
    De Lathauwer, Lieven
    Suykens, Johan A. K.
    NEURAL NETWORKS, 2011, 24 (08) : 861 - 874
  • [10] Kernel-based linear classification on categorical data
    Lifei Chen
    Yanfang Ye
    Gongde Guo
    Jianping Zhu
    Soft Computing, 2016, 20 : 2981 - 2993