AI-powered evaluation of lung function for diagnosis of interstitial lung disease

被引:0
|
作者
Gompelmann, Daniela [1 ]
Gysan, Maximilian Robert [1 ]
Desbordes, Paul [2 ]
Maes, Julie [2 ]
Van Orshoven, Karolien [2 ]
De Vos, Maarten [2 ,3 ]
Steinwender, Markus [4 ]
Helfenstein, Erich [5 ]
Marginean, Corina [6 ]
Henzi, Nicolas [7 ]
Cerkl, Peter [8 ]
Heeb, Patrick [9 ]
Keusch, Stephan [10 ]
Calderari, Gianluca [11 ]
von Boetticher, Paul [12 ]
Baumgartner, Bernhard [13 ]
Stolz, Daiana [14 ,15 ,16 ,17 ]
Simon, Marioara [18 ]
Prosch, Helmut [19 ]
Janssens, Wim [20 ,21 ]
Topalovic, Marko [2 ]
机构
[1] Med Univ Vienna, Dept Internal Med 2, Div Pulmonol, Vienna, Austria
[2] ArtiQ NV, Leuven, Belgium
[3] Katholieke Univ Leuven, ESAT Stadius Dept Dev & Regenerat, Herestr 49, B-3000 Leuven, Belgium
[4] Hosp Leoben, Leoben, Austria
[5] Klin St Anna, Lungenpraxis Hirslanden, Luzern, Switzerland
[6] Cty Clin Hosp Mures, Clin Pulm Dis Tg Mures, Targu Mures, Romania
[7] Spital Limmattal, Dept lung Dis, Schlieren, Switzerland
[8] Landeskrankenhaus Hohenems, Dept Pulmonol, Hohenems, Austria
[9] Zuercher Rehazentren Clin Wald, Pulm Med & Sleep Med Ctr, Zurich, Switzerland
[10] Univ Zuerich, Zurich, Switzerland
[11] Certora, Lugano, Switzerland
[12] Ordensklinikum Linz Elisabethinen, Pulmonol, Linz, Austria
[13] Salzkammergut Klinikum Vocklabruck, Dept Lung Dis, Vocklabruck, Austria
[14] Univ Freiburg, Clin Resp Med, Freiburg, Germany
[15] Univ Freiburg, Fac Med, Freiburg, Germany
[16] Univ Hosp Basel, Clin Resp Med & Pulm Cell Res, Basel, Switzerland
[17] Univ Hosp Basel, Dept Clin Res, Basel, Switzerland
[18] Iuliu Hatieganu Univ Med & Pharm, Cluj Napoca, Romania
[19] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Vienna, Austria
[20] Katholieke Univ Leuven, Dept Chron Dis Metab & Ageing, Leuven, Belgium
[21] Univ Hosp Leuven, Dept Resp Dis, Leuven, Belgium
关键词
Idiopathic pulmonary fibrosis; Rare lung diseases;
D O I
10.1136/thorax-2024-221537
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background The diagnosis of interstitial lung disease (ILD) can pose a challenge as the pulmonary function test (PFT) is only minimally affected at the onset. To improve early diagnosis, this study aims to explore the potential of artificial intelligence (AI) software in assisting pulmonologists with PFT interpretation for ILD diagnosis. The software provides an automated description of PFT and disease probabilities computed from an AI model. Study methods In study phase 1, a cohort of 60 patients, 30 of whom had ILD, were retrospectively diagnosed by 25 pulmonologists (8 junior physicians and 17 experienced pneumologists) by evaluating a PFT (body plethysmography and diffusion capacity) and a short medical history. The experts screened the cohort twice, without and with the aid of AI (ArtiQ.PFT, V.1.4.0, ArtiQ, BE) software and provided a primary diagnosis and up to three differential diagnoses for each case. In study phase 2, 19 pulmonologists repeated the protocol after using ArtiQ.PFT for 4-6 months. Results Overall, AI increased the diagnostic accuracy for various lung diseases from 41.8% to 62.3% in study phase 1. Focusing on ILD, AI improved the detection of lung fibrosis as the primary diagnosis from 42.8% without AI to 72.1% with AI (p<0.0001). Phase 2 yielded a similar outcome: using AI increased ILD diagnosis based on primary diagnosis (53.2% to 75.1%; p<0.0001). ILD detections without AI support significantly increased between phase 1 and phase 2 (p=0.028) but not with AI (p=0.24). Interpretation This study shows that AI-based decision support on PFT interpretation improves accurate and early ILD diagnosis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Early detection of interstitial lung disease using AI-powered spirometry
    Topalovic, M.
    Coenegrachts, T.
    Van Steenbergen, S.
    Halilovic, A.
    Maes, J.
    De Sadeleer, L.
    Janssens, W.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [2] Evaluation of an AI-Powered Lung Nodule Algorithm for Detection and 3D Segmentation of Primary Lung Tumors
    Weikert, Thomas
    D'Antonoli, Tugba Akinci
    Bremerich, Jens
    Stieltjes, Bram
    Sommer, Gregor
    Sauter, Alexander W.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2019,
  • [3] Take CT, get PET free: AI-powered breakthrough in lung cancer diagnosis and prognosis
    Wang, Tonghe
    Yang, Xiaofeng
    CELL REPORTS MEDICINE, 2024, 5 (04)
  • [4] Lung-DT: An AI-Powered Digital Twin Framework for Thoracic Health Monitoring and Diagnosis
    Avanzato, Roberta
    Beritelli, Francesco
    Lombardo, Alfio
    Ricci, Carmelo
    SENSORS, 2024, 24 (03)
  • [5] Evaluation Of Lung Function And Lung Fibrosis In Mouse Models Of Interstitial Lung Disease
    Dinocca, S. E.
    Ying, X.
    Sebalusky, J.
    Potestio, L.
    Cai, Y.
    Underwood, S.
    Yabkowitz, R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191
  • [6] Lung biopsy for the diagnosis of interstitial lung disease
    Quadrelli, Silvia
    Lyons, Gustavo
    Ciallella, Lorena
    Iotti, Alejandro
    Chertcoff, Julio
    MEDICINA-BUENOS AIRES, 2007, 67 (06) : 691 - 697
  • [7] Diagnosis of interstitial lung disease
    Bush, A
    PEDIATRIC PULMONOLOGY, 1996, 22 (02) : 81 - 82
  • [8] SkinHealthMate app: An AI-powered digital platform for skin disease diagnosis
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    Camara, Aboudramane
    Elbahja, Charafeddine
    Elmansouri, Amine
    Hassini, Yassine
    SYSTEMS AND SOFT COMPUTING, 2024, 6
  • [9] Evaluation of lung function referral and testing in the context of Interstitial Lung Disease (ILD).
    Apen, Calvin
    Khan, Muhammad
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [10] Videothoracoscopic lung biopsy in the diagnosis of interstitial lung disease
    Rena, O
    Casadio, C
    Leo, F
    Giobbe, R
    Cianci, R
    Baldi, S
    Rapellino, M
    Maggi, G
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 1999, 16 (06) : 624 - 627