DECODABLE QUANTUM LDPC CODES BEYOND THE \surdn DISTANCE BARRIER USING HIGH-DIMENSIONAL EXPANDERS

被引:4
|
作者
Evra, Shai [1 ]
Kaufman, Tali [2 ]
Zemor, Gilles [3 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
[2] Bar Ilan Univ, Dept Comp Sci, IL-5290002 Ramat Gan, Israel
[3] Inst Math Bordeaux, F-33400 Talence, France
关键词
quantum code; expander; chain complex; GRAPHS;
D O I
10.1137/20M1383689
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Constructing quantum low-density parity-check (LDPC) codes with a minimum distance that grows faster than a square root of the length has been a major challenge of the field. With this challenge in mind, we investigate constructions that come from high-dimensional expanders, in particular Ramanujan complexes. These naturally give rise to very unbalanced quantum error correcting codes that have a large X-distance but a much smaller Z-distance. However, together with a classical expander LDPC code and a tensoring method that generalizes a construction of Hastings and also the Tillich--Ze'\mor construction of quantum codes, we obtain quantum LDPC codes whose minimum distance exceeds the square root of the code length and whose dimension comes close to a square root of the code length. When the ingredient is a 2-dimensional Ramanujan complex, or the 2-skeleton of a 3-dimensional Ramanujan complex, we obtain a quantum LDPC code of minimum distance n 1 / 2 log1/2 n. We then exploit the expansion properties of the complex to devise the first polynomial-time algorithm that decodes above the square root barrier for quantum LDPC codes. Using a 3-dimensional Ramanujan complex, we also obtain an overall quantum code of minimum distance n 1 / 2 log n, which sets a new record for quantum LDPC codes.
引用
收藏
页码:276 / 316
页数:41
相关论文
共 50 条
  • [1] DECODABLE QUANTUM LDPC CODES BEYOND THE /n DISTANCE BARRIER USING HIGH-DIMENSIONAL EXPANDERS
    Evra, Shai
    Kaufman, Tali
    Zemor, Gilles
    SIAM Journal on Computing, 2024, 53 (06): : 20 - 276
  • [2] Decodable quantum LDPC codes beyond the square root distance barrier using high dimensional expanders
    Evra, Shai
    Kaufman, Tali
    Zemor, Gilles
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 218 - 227
  • [3] New Cosystolic Expanders from Tensors Imply Explicit Quantum LDPC Codes with Ω(√n logk n) Distance
    Kaufman, Tali
    Tessler, Ran J.
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 1317 - 1329
  • [4] High-dimensional entanglement for long distance quantum communication
    Yin Juan
    Qian Yong
    Li Xiao-Qiang
    Bao Xiao-Hui
    Peng Cheng-Zhi
    Yang Tao
    Pan Ge-Sheng
    ACTA PHYSICA SINICA, 2011, 60 (06)
  • [5] Improved visualization of high-dimensional data using the distance-of-distance transformation
    Liu, Jinke
    Vinck, Martin
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
  • [6] Resource reduction in multiplexed high-dimensional quantum Reed-Solomon codes
    Nishio, Shin
    Piparo, Nicole Lo
    Hanks, Michael
    Munro, William John
    Nemoto, Kae
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [7] High-dimensional quantum operations using structured photons
    Hiekkamaki, Markus
    Prabhakar, Shashi
    Fickler, Robert
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [8] Long distance entanglement and high-dimensional quantum teleportation in the Fermi–Hubbard model
    Sanaa Abaach
    Zakaria Mzaouali
    Morad El Baz
    Scientific Reports, 13
  • [9] Learning Binary Codes for High-Dimensional Data Using Bilinear Projections
    Gong, Yunchao
    Kumar, Sanjiv
    Rowley, Henry A.
    Lazebnik, Svetlana
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 484 - 491
  • [10] Distance assessment and analysis of high-dimensional samples using variational autoencoders
    Inacio, Marco
    Izbicki, Rafael
    Gyires-Toth, Balint
    INFORMATION SCIENCES, 2021, 557 (557) : 407 - 420