Object-Based Semantic Fusion Algorithm of Lidar and Camera via Inverse Projection

被引:0
|
作者
Yuan, Xingyu [1 ]
Wang, Shuting [1 ]
Xie, Yuanlong [1 ,2 ]
Quan Xie, Sheng [3 ]
Wang, Chao [1 ]
Xiong, Tifan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
[2] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Peoples R China
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, England
基金
中国国家自然科学基金;
关键词
Arc extraction; calibration; camera; inverse projection; Lidar; semantic segmentation; EXTRINSIC CALIBRATION; 2D LIDAR; RESPECT;
D O I
10.1109/TIM.2025.3548241
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Currently, multisensor fusion for point cloud semantic segmentation plays a pivotal role in robotics and autonomous driving. Lidar and the camera are two commonly used sensors, each offering different data modalities. However, fusion algorithms leveraging these modalities face significant challenges in achieving effective integration, and the practical application of these methods has yielded unsatisfactory results. To address these issues, this article proposes an object-based semantic fusion algorithm of Lidar and the camera via inverse projection, which effectively integrates the information from both sensors and performs accurate semantic segmentation. We first propose a calibration method for Lidar and the camera based on arc features in the environment, which derives the projection matrix between sensors and enhances the adaptability of the calibration process to environmental features. A multidimensional semantic segmentation algorithm based on inverse projection is designed, which is suitable for both 2-D and 3-D laser point clouds. The segmentation region is obtained by inverse projection of the bounding box, effectively reducing the influence of background points on the segmentation results and improving fusion efficiency. Additionally, distance-adaptive clustering is employed to mitigate the sensitivity of sensor systems to distance and point cloud sparsity. Building on these, we propose the object-based semantic fusion algorithm via inverse projection that exploits perceptual information from both Lidar and camera data. This approach achieves higher accuracy compared to existing Lidar-camera fusion semantic segmentation algorithms. Numerous experiments conducted on the SemanticKITTI dataset demonstrate the superiority of our approach, with a mean intersection over union (mIoU) outperforming the state-of-the-art method by 1.4%. Field experiments further validate the effectiveness of our proposed algorithm.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Semantic object-based urban scene analysis for feature fusion of VHR imagery and Lidar DSM
    Fatemeh Tabib Mahmoudi
    Signal, Image and Video Processing, 2023, 17 : 1723 - 1731
  • [2] Semantic object-based urban scene analysis for feature fusion of VHR imagery and Lidar DSM
    Mahmoudi, Fatemeh Tabib
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1723 - 1731
  • [3] An object-based system for LiDAR data fusion and feature extraction
    O'Neil-Dunne, Jarlath P. M.
    MacFaden, Sean W.
    Royar, Anna R.
    Pelletier, Keith C.
    GEOCARTO INTERNATIONAL, 2013, 28 (03) : 227 - 242
  • [4] Object Tracking Based on the Fusion of Roadside LiDAR and Camera Data
    Wang, Shujian
    Pi, Rendong
    Li, Jian
    Guo, Xinming
    Lu, Youfu
    Li, Tao
    Tian, Yuan
    IEEE Transactions on Instrumentation and Measurement, 2022, 71
  • [5] Object Tracking Based on the Fusion of Roadside LiDAR and Camera Data
    Wang, Shujian
    Pi, Rendong
    Li, Jian
    Guo, Xinming
    Lu, Youfu
    Li, Tao
    Tian, Yuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] SLAM Algorithm Based on Fusion of LiDAR and Depth Camera
    Liu Q.
    Yang H.
    Liu T.
    Wu T.
    Lu C.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (11): : 29 - 38
  • [7] OBJECT-BASED FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION OF URBAN AREAS
    Marpu, Prashanth Reddy
    Martinez, Sergio Sanchez
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [8] URBAN AREA OBJECT-BASED CLASSIFICATION BY FUSION OF HYPERSPECTRAL AND LIDAR DATA
    Kiani, Kamel
    Mojaradi, Barat
    Esmaeily, Ali
    Salehi, Bahram
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [9] A LiDAR-Camera Fusion 3D Object Detection Algorithm
    Liu, Leyuan
    He, Jian
    Ren, Keyan
    Xiao, Zhonghua
    Hou, Yibin
    INFORMATION, 2022, 13 (04)
  • [10] Improving Semantic Video Retrieval via Object-Based Features
    Muehling, Markus
    Ewerth, Ralph
    Freisleben, Bernd
    2009 IEEE THIRD INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2009), 2009, : 109 - 115