Mussel-inspired strong and tough hydrogel with self-adhesive properties based on dynamic interactions for flexible wearable electronics

被引:0
|
作者
Zhang, Xiaoyong [1 ]
Li, Fan [1 ]
Li, Zhaozhao [1 ]
Bai, Yongping [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Mat Sci & Engn, Affiliated Hosp 1, Huainan 232001, Anhui, Peoples R China
[2] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150000, Heilongjiang, Peoples R China
关键词
SENSORS;
D O I
10.1039/d4ta08383k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Emerging conductive hydrogels showcase profound potential for sophisticated manipulation and various sensing applications. However, it remains challenging to prepare conductive hydrogel materials that combine mechanical toughness, reliable healability, and high adhesion strength for skin comfort. Inspired by the robust adhesive mechanisms of mussel proteins, we present an innovative adhesive hydrogel (PVA-DBA) with exceptional adhesive properties, elasticity, and self-healing capabilities, achieved through the integration of a PVA-DOPA copolymer and Fe3+ ions within a PAM-PAA hydrogel. The DOPA groups provide strong interfacial adhesion, yielding an adhesion strength of 63.0 kPa on porcine skin (simulating human skin) under ambient conditions. This adhesion remains repeatable across 6 cycles without residual interfacial traces. Catechol-carboxyl interactions, enhanced by Fe3+ coordination, impart the hydrogel with high tensile strength, stretchability, and toughness while accelerating gelation kinetics. The unique structural composition of the hydrogel provides multiple functional groups (-NH2, -COOH, and catechol), collectively reinforcing mechanical stability and self-healing performance, achieving an impressive strain self-repair rate of 81.2%. The resultant PVA-DBA hydrogel demonstrates mechanical robustness, adhesive functionality, and sensitive conductivity, which make it highly suitable for integration into sensing devices that detect bodily motions such as finger, elbow, and knee bending, with a response time of 400 ms. Furthermore, this hydrogel holds potential in sports applications, effectively recording stretching and bending movements, marking a significant advancement in the development of intelligent and responsive material systems.
引用
收藏
页码:5304 / 5314
页数:11
相关论文
共 50 条
  • [1] Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors
    Lv, Rui
    Bei, Zhongwu
    Huang, Yuan
    Chen, Yangwei
    Zheng, Zhiqiang
    You, Qingliang
    Zhu, Chao
    Cao, Yiping
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (02)
  • [2] A mussel-inspired semi-interpenetrating structure hydrogel with superior stretchability, self-adhesive properties, and pH sensitivity for smart wearable electronics
    Xing, Lu
    Song, Yaoting
    Zou, Xinquan
    Tan, Haojie
    Yan, Jiani
    Wang, Jikui
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (39) : 13376 - 13386
  • [3] Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review
    Yu, Qin
    Zheng, Zirong
    Dong, Xinhao
    Cao, Rui
    Zhang, Shuheng
    Wu, Xiaolin
    Zhang, Xinya
    SOFT MATTER, 2021, 17 (39) : 8786 - 8804
  • [4] A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics
    Han, Lu
    Lu, Xiong
    Wang, Menghao
    Gan, Donglin
    Deng, Weili
    Wang, Kefeng
    Fang, Liming
    Liu, Kezhi
    Chan, Chun Wai
    Tang, Youhong
    Weng, Lu-Tao
    Yuan, Huipin
    SMALL, 2017, 13 (02)
  • [5] A new mussel-inspired highly self-adhesive & conductive poly (vinyl alcohol)-based hydrogel for wearable sensors
    Yu, Yaru
    Zhao, Xiaowen
    Ye, Lin
    APPLIED SURFACE SCIENCE, 2021, 562
  • [6] A new mussel-inspired highly self-adhesive & conductive poly (vinyl alcohol)-based hydrogel for wearable sensors
    Yu, Yaru
    Zhao, Xiaowen
    Ye, Lin
    Applied Surface Science, 2021, 562
  • [7] Mussel-Inspired Hydrogels for Self-Adhesive Bioelectronics
    Xie, Chaoming
    Wang, Xiao
    He, Huan
    Ding, Yonghui
    Lu, Xiong
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (25)
  • [8] Mussel-Inspired Tough Double Network Hydrogel As Transparent Adhesive
    Wang, Xiaohan
    Si, Yi
    Zheng, Kai
    Guo, Xuhong
    Wang, Jie
    Xu, Yisheng
    ACS APPLIED POLYMER MATERIALS, 2019, 1 (11) : 2998 - 3007
  • [9] Mussel-Inspired Conductive Hydrogel with Self-Healing, Adhesive, and Antibacterial Properties for Wearable Monitoring
    Zhang, Xiaohui
    Wei, Jingjing
    Lu, Shengchang
    Xiao, He
    Miao, Qingxian
    Zhang, Min
    Liu, Kai
    Chen, Lihui
    Huang, Liulian
    Wu, Hui
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (11) : 5798 - 5807
  • [10] Mussel-inspired self-healing adhesive MXene hydrogel for epidermal electronics
    Zhang, Yunfei
    Xu, Zhishan
    Li, Mingkun
    Yuan, Yue
    Wang, Wei
    Zhang, Liqun
    Wan, Pengbo
    DEVICE, 2024, 2 (03):