Chemical engineering of CRISPR-Cas systems for therapeutic application

被引:0
|
作者
Barber, Halle M. [1 ]
Pater, Adrian A. [2 ]
Gagnon, Keith T. [2 ]
Damha, Masad J. [1 ]
O'Reilly, Daniel [3 ,4 ]
机构
[1] McGill Univ, Dept Chem, Montreal, PQ, Canada
[2] Wake Forest Univ, Bowman Gray Sch Med, Dept Biochem, Winston Salem, NC 27103 USA
[3] Univ Texas Med Branch, Dept Pharmacol & Toxicol, Galveston, TX 77555 USA
[4] Univ Texas Med Branch, Sealy Inst Drug Discovery, Galveston, TX 77555 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
SEQUENCE-SPECIFIC CONTROL; RNA-GUIDED CAS9; HIGHLY EFFICIENT; MODIFIED OLIGONUCLEOTIDES; HEREDITARY ANGIOEDEMA; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; HYBRID DUPLEXES; GENE-EXPRESSION; NUCLEIC-ACID;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.
引用
收藏
页码:209 / 230
页数:22
相关论文
共 50 条
  • [1] Chemical engineering of CRISPR-Cas systems for therapeutic application
    Barber, Halle M.
    Pater, Adrian A.
    Gagnon, Keith T.
    Damha, Masad J.
    O'Reilly, Daniel
    NATURE REVIEWS DRUG DISCOVERY, 2024,
  • [2] Chemical engineering of CRISPR–Cas systems for therapeutic application
    Halle M. Barber
    Adrian A. Pater
    Keith T. Gagnon
    Masad J. Damha
    Daniel O’Reilly
    Nature Reviews Drug Discovery, 2025, 24 (3) : 209 - 230
  • [3] Therapeutic genome engineering via CRISPR-Cas systems
    Moreno, Ana M.
    Mali, Prashant
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2017, 9 (04)
  • [4] Application of CRISPR-Cas systems in neuroscience
    Bonnerjee, Deepro
    Bagh, Sangram
    ADVANCES IN CRISPR/CAS AND RELATED TECHNOLOGIES, 2021, 178 : 231 - 264
  • [5] Phage Genetic Engineering Using CRISPR-Cas Systems
    Hatoum-Aslan, Asma
    VIRUSES-BASEL, 2018, 10 (06):
  • [6] CRISPR-Cas systems for genome engineering and investigation Introduction
    Concordet, Jean Paul
    Giovannangeli, Carine
    METHODS, 2017, 121 : 1 - 2
  • [7] Engineering virus resistance via CRISPR-Cas systems
    Mahas, Ahmed
    Mahfouz, Magdy
    CURRENT OPINION IN VIROLOGY, 2018, 32 : 1 - 8
  • [8] CRISPR-Cas Systems in Streptococci
    Gong, Tao
    Lu, Miao
    Zhou, Xuedong
    Zhang, Anqi
    Tang, Boyu
    Chen, Jiamin
    Jing, Meiling
    Li, Yuqing
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2019, 32 : 1 - 37
  • [9] CRISPR-Cas systems in enterococci
    Cabral, Amanda Seabra
    Lacerda, Fernanda de Freitas
    Leite, Vitor Luis Macena
    de Miranda, Filipe Martire
    da Silva, Amanda Beiral
    dos Santos, Barbara Araujo
    Lima, Jailton Lobo da Costa
    Teixeira, Lucia Martins
    Neves, Felipe Piedade Goncalves
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2024, : 3945 - 3957
  • [10] Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems
    Aquino-Jarquin, Guillermo
    DRUG DISCOVERY TODAY, 2023, 28 (11)