Three-Dimensional Lorentz-Invariant Velocities

被引:2
|
作者
Hill, James M. [1 ]
机构
[1] Univ South Australia, STEM, Adelaide, SA 5006, Australia
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 09期
关键词
special relativity; Lorentz invariance; functional forms; energy and momentum partial differential identities; 35q75;
D O I
10.3390/sym16091133
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lorentz invariance underlies special relativity, and the energy formula and relative velocity formula are well known to be invariant under a Lorentz transformation. Here, we determine the functional forms in terms of four arbitrary functions for those three dimensional velocity fields that are automatically invariant under the most general fully three-dimensional Lorentz transformation. For general three-dimensional motion, using rectangular Cartesian coordinates (x,y,z), we determine the first-order partial differential equations for the three velocity components u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t) in the x-, y- and z-directions respectively. These partial differential equations and the associated partial differential relations connecting energy and momentum are fully compatible with the Lorentz-invariant energy-momentum relations and appear not to have been given previously in the literature. We determine the spatial and temporal dependence of the functional forms for those three-dimensional velocity fields that are automatically invariant under three-dimensional Lorentz transformations. An interesting special case gives rise to families of particle paths for which the magnitude of the velocity is the speed of light. This is indicative of the abundant possibilities existing in the "fast lane".
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Relativistic gas: Lorentz-invariant distribution for the velocities
    Curado, Evaldo M. F.
    Cedeno, Carlos E. E.
    Soares, Ivano Damiao
    Tsallis, Constantino
    CHAOS, 2022, 32 (10)
  • [2] Scalar field theories in a Lorentz-invariant three-dimensional non-commutative space-time
    Imai, S
    Sasakura, N
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (09):
  • [3] LORENTZ-INVARIANT CLOCK
    SCHLEGEL, R
    FOUNDATIONS OF PHYSICS, 1977, 7 (3-4) : 245 - 253
  • [4] Lorentz-invariant CPT violation
    Chaichian, Masud
    Fujikawa, Kazuo
    Tureanu, Anca
    EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (03): : 1 - 16
  • [5] Lorentz-invariant superluminal tunneling
    Ghose, P
    Samal, MK
    PHYSICAL REVIEW E, 2001, 64 (03): : 7
  • [6] GENERAL LORENTZ-INVARIANT LOCALIZATION
    KALNAY, AJ
    TORRES, PL
    ACTA CIENTIFICA VENEZOLANA, 1972, 23 : 46 - &
  • [7] Lorentz-invariant CPT violation
    Masud Chaichian
    Kazuo Fujikawa
    Anca Tureanu
    The European Physical Journal C, 2013, 73
  • [8] LORENTZ-INVARIANT THEORY OF GRAVITATION
    PETRY, W
    ANNALEN DER PHYSIK, 1977, 34 (06) : 477 - 484
  • [9] Lorentz-invariant Bell's inequality
    Kim, WT
    Son, EJ
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [10] LORENTZ-INVARIANT METHOD OF GRAVITATIONAL PERTURBATION
    CARMELI, M
    NUOVO CIMENTO B, 1968, 55 (01): : 220 - &