Environmental Assessment of Hybrid Waste-to-Energy System in Ghana

被引:0
|
作者
Armoo, Ekua Afrakoma [1 ,2 ]
Baidoo, Theophilus [3 ]
Mohammed, Mutala [2 ]
Agyenim, Francis Boateng [2 ]
Kemausuor, Francis [4 ]
Narra, Satyanarayana [1 ,5 ]
机构
[1] Univ Rostock, Dept Waste & Resource Management, D-18051 Rostock, Germany
[2] Council Sci, Ind Res Inst Ind Res, POB LG 576, Accra, Ghana
[3] Zeal Environm Technol, POB TD 1395, Takoradi, Ghana
[4] Kwame Nkrumah Univ Sci & Technol KNUST, Dept Agr & Biosyst Engn, Kumasi 0395028, Ghana
[5] German Biomass Res Ctr gGmbH, D-04347 Leipzig, Germany
关键词
life cycle analysis; waste to energy; anaerobic digestion; pyrolysis; refuse derived fuels; environmental impacts; global warming potential; openLCA; LandGEM; Ghana; MUNICIPAL SOLID-WASTE; LIFE-CYCLE ASSESSMENT; ELECTRICITY; TECHNOLOGIES; BIOGAS;
D O I
10.3390/en18030595
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Waste management in most parts of Africa is characterized by the disposal of mixed waste in unengineered landfills. The aim of this study is to assess the environmental impact of mixed waste received at a waste-to-energy plant in Ghana relative to the current model of landfilling. A Life Cycle Assessment was conducted using OpenLCA software version 2.3.1 based on the ReCiPe Midpoint method. For landfilling, LandGEM software version 3.03 was used. The results indicate that waste-to-energy has the potential to provide carbon savings of 3.52 tCO2eq/ton of waste treated compared to landfilling. Pyrolysis is observed to have high avoided burden across all impact categories, with the lowest Global Warming Potential of -2.3 kgCO2eq. Anaerobic digestion shows a near neutral environmental impact with the highest value of 47.56 kg 1,4DCB for Terrestrial Ecotoxicity, while Refuse-Derived Fuel and segregation processes show low environmental burdens. The net avoided burden is highest for global warming and non-carcinogenic human toxicity potential. Overall, the hybrid waste-to-energy model is concluded to be an environmentally preferred waste management option compared to conventional landfilling methods, and we recommend that decision-makers facilitate investments into it. It is also recommended for the development of local inventories and databases to encourage more country-specific environmental impact studies and to reduce uncertainty.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] ENVIRONMENTAL ASSESSMENT OF WASTE-TO-ENERGY CONVERSION SYSTEMS
    ANANTH, KP
    GOLEMBIEWSKI, MA
    FREEMAN, HM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 180 (AUG): : 64 - FUEL
  • [2] Energy, exergy, environmental and economic analysis of hybrid waste-to-energy plants
    Carneiro, Maria Luisa N. M.
    Gomes, Marcos Sebastiao P.
    ENERGY CONVERSION AND MANAGEMENT, 2019, 179 : 397 - 417
  • [3] Environmental, Energy, and Techno-Economic Assessment of Waste-to-Energy Incineration
    Zeng, Jincan
    Mustafa, Ade Brian
    Liu, Minwei
    Huang, Guori
    Shang, Nan
    Liu, Xi
    Wei, Kexin
    Wang, Peng
    Dong, Huijuan
    SUSTAINABILITY, 2024, 16 (10)
  • [4] Techno-eco-environmental analysis of a waste-to-energy based polygeneration through hybrid renewable energy system
    Kumar, Nagendra
    Karmakar, Sujit
    ENERGY, 2023, 283
  • [5] Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities
    Menikpura, S. N. M.
    Sang-Arun, Janya
    Bengtsson, Magnus
    RENEWABLE ENERGY, 2016, 86 : 576 - 584
  • [6] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim, Muhammad
    Kumar, Rohan
    Kanwal, Ammara
    Shahzad, Amir
    Ahmad, Ashfaq
    Farooq, Muhammad
    ENERGY REPORTS, 2023, 9 : 1087 - 1097
  • [7] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim, Muhammad
    Kumar, Rohan
    Kanwal, Ammara
    Shahzad, Amir
    Ahmad, Ashfaq
    Farooq, Muhammad
    ENERGY REPORTS, 2023, 9 : 1087 - 1097
  • [8] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim M.
    Kumar R.
    Kanwal A.
    Shahzad A.
    Ahmad A.
    Farooq M.
    Energy Reports, 2023, 9 : 1087 - 1097
  • [9] Sustainable Development in Energy Policy: A Governance Assessment of Environmental Stakeholder Inclusion in Waste-to-Energy
    McCauley, Darren
    SUSTAINABLE DEVELOPMENT, 2015, 23 (05) : 273 - 284
  • [10] WASTE-TO-ENERGY - WASTE-TO-ENERGY PLANT EXPANDS
    HODSON, CO
    POLLUTION ENGINEERING, 1995, 27 (12) : 14 - 14