Molybdenum-Oxide-Modified PEDOT:PSS as Efficient Hole Transport Layer in Perovskite Solar Cells

被引:2
|
作者
Fan, Pu [1 ]
Zhou, Zhipeng [1 ,2 ]
Tian, Jianghao [1 ,2 ]
Yu, Junsheng [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[2] Univ Elect Sci & Technol China UESTC, Sch Optoelect Sci & Engn, State Key Lab Elect Thin Films & Integrated Device, Chengdu 610054, Peoples R China
来源
MOLECULES | 2024年 / 29卷 / 21期
基金
中国国家自然科学基金;
关键词
perovskite solar cells; PEDOT:PSS; MoO3; hole transport layer; stability; IMPROVED PERFORMANCE; HIGHLY EFFICIENT;
D O I
10.3390/molecules29215064
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over the last ten years, there has been a remarkable enhancement in the power conversion efficiency (PCE) of perovskite solar cells (PSCs), with poly (3,4-ethylenedioxythiohene):poly (styrenesulfonate) (PEDOT:PSS) emerging as a prevalent choice for the hole transport layer (HTL). Nevertheless, the evolution of the widely utilized PEDOT:PSS HTL has not kept pace with the swift advancements in PSC technology, attributed to its suboptimal electrical conductivity, acidic nature, and inadequate electron-blocking performance. This study presents a novel approach to enhance the HTL by introducing molybdenum oxide (MoO3) into the PEDOT:PSS, leveraging the conductivity and solution processing compatibility of MoO3. Two methods for MoO3 integration were explored: an ammonium molybdate tetrahydrate (AMT) precursor and the direct addition of MoO3 nanoparticles. The carrier dynamics of PSCs modified by MoO3 are significantly optimized. Therefore, the PCE of the device modified by AMT and molybdenum oxide is increased to 18.23 and 19.64%, respectively, and the stability of the device is also improved. This study emphasizes the potential of MoO3 in contributing to the development of more efficient and stable PSCs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer
    Han, Wenbin
    Ren, Guanhua
    Liu, Jiuming
    Li, Zhiqi
    Bao, Hongchang
    Liu, Chunyu
    Guo, Wenbin
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (44) : 49297 - 49322
  • [2] Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells
    Huang, Xu
    Guo, Heng
    Yang, Jian
    Wang, Kai
    Niu, Xiaobin
    Liu, Xiaobo
    ORGANIC ELECTRONICS, 2016, 39 : 288 - 295
  • [3] Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells
    Lee, Da-Young
    Na, Seok-In
    Kim, Seok-Soon
    NANOSCALE, 2016, 8 (03) : 1513 - 1522
  • [4] Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer
    Hui Luo
    Xuanhuai Lin
    Xian Hou
    Likun Pan
    Sumei Huang
    Xiaohong Chen
    Nano-Micro Letters, 2017, 9
  • [5] Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT: PSS Hole Transport Layer
    Luo, Hui
    Lin, Xuanhuai
    Hou, Xian
    Pan, Likun
    Huang, Sumei
    Chen, Xiaohong
    NANO-MICRO LETTERS, 2017, 9 (04)
  • [6] Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer
    Hui Luo
    Xuanhuai Lin
    Xian Hou
    Likun Pan
    Sumei Huang
    Xiaohong Chen
    Nano-Micro Letters, 2017, (04) : 19 - 29
  • [7] Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer
    Hui Luo
    Xuanhuai Lin
    Xian Hou
    Likun Pan
    Sumei Huang
    Xiaohong Chen
    Nano-Micro Letters, 2017, 9 (04) : 19 - 29
  • [8] Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer
    Huang, Xu
    Wang, Kai
    Yi, Chao
    Meng, Tianyu
    Gong, Xiong
    ADVANCED ENERGY MATERIALS, 2016, 6 (03)
  • [9] Graphene oxide modified PEDOT:PSS as an efficient hole transport layer for enhanced performance of hybrid silicon solar cells
    Sharma, Ruchi K.
    Srivastava, Avritti
    Kumari, Premshila
    Sharma, Deepak
    Tawale, J. S.
    Agrawal, Ved Varun
    Singh, Bhanu Pratap
    Prathap, Pathi
    Srivastava, Sanjay K.
    SURFACES AND INTERFACES, 2023, 36
  • [10] Tailoring the PEDOT:PSS hole transport layer by electrodeposition method to improve perovskite solar cells
    Erazo E.A.
    Ortiz P.
    Cortés M.T.
    Electrochimica Acta, 2023, 439