Developing predictive models for tocilizumab response in rheumatoid arthritis: a gene expression and machine learning approaches

被引:0
|
作者
Lan, Weiya [1 ]
Du, Wei [2 ]
Ma, Wukai [3 ]
Yao, Xueming [3 ]
Jiang, Zong [1 ]
Zhou, Jing [3 ]
Chen, Changming [3 ]
Wang, Chunxia [3 ]
Tang, Fang [3 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Grad Sch, Guiyang, Peoples R China
[2] Guizhou Univ Tradit Chinese Med, Affiliated Hosp 2, Dept Crit Caremed, Guiyang, Peoples R China
[3] Guizhou Univ Tradit Chinese Med, Affiliated Hosp 2, Dept Rheumatol & Immunol, Guiyang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Tocilizumab; rheumatoid arthritis; treatment response; gene expression profiles; predictive models; machine learning algorithms; GEO;
D O I
10.1080/16583655.2025.2451387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease treated with tocilizumab in patients unresponsive to methotrexate. This study aimed to identify gene expression profiles and predictive models for tocilizumab treatment response in RA patients.Methods: Using the GSE78068 dataset from 38 RA patients, we identified differentially expressed genes between remission and non-remission groups. Predictive models were created using CART, random forest, and SVM techniques, with model genes selected through LASSO regression. Gene set enrichment and immune cell landscape analyses were performed to understand biological pathways and immune cell composition.Results: Analysis revealed 40 differentially expressed genes, with LASSO regression identifying 8 model genes significantly associated with remission. The SVM-based model achieved the highest performance (AUC=1.0, Brier score=0.025).Conclusions: This study developed an effective 8-gene model for predicting tocilizumab treatment response, potentially supporting personalized therapy in RA patients.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] PREDICTIVE FACTORS OF RESPONSE TO TOCILIZUMAB IN PATIENTS WITH ACTIVE RHEUMATOID ARTHRITIS
    Reina, D.
    Narvaez, J.
    Garcia-Diaz, S.
    Diaz Torne, C.
    Magallares, B.
    Hernandez, M. V.
    Sanmarti, R.
    Rodriguez de la Serna, A.
    Llobet, J.
    Corominas, H.
    Nolla, J.
    ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 : 449 - 449
  • [2] Predictive Factors Of Response To Tocilizumab In Patients With Active Rheumatoid Arthritis.
    Victoria Hernandez, Maria
    Narvaez, Javier
    Sanmarti, Raimon
    Reina, Delia
    Diaz-Torne, Cesar
    Magallares, Berta
    Rodriguez de la Serna, Arturo
    Maria Llobet, Jose
    Corominas, Hector
    Miquel Nolla, Joan
    ARTHRITIS AND RHEUMATISM, 2013, 65 : S611 - S611
  • [3] Predicting Response to Tocilizumab Monotherapy in Rheumatoid Arthritis: A Real-world Data Analysis Using Machine Learning
    Johansson, Fredrik D.
    Collins, Jamie E.
    Yau, Vincent
    Guan, Hongshu
    Kim, Seoyoung C.
    Losina, Elena
    Sontag, David
    Stratton, Jacklyn
    Trinh, Huong
    Greenberg, Jeffrey
    Solomon, Daniel H.
    JOURNAL OF RHEUMATOLOGY, 2021, 48 (09) : 1364 - 1370
  • [4] IDENTIFICATION OF NEW BIOMARKERS FOR RHEUMATOID ARTHRITIS BY MACHINE LEARNING APPROACHES
    Huang, Hai-Hui
    Peng, Xin-Dong
    Liang, Yong
    He, Min-Fan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (10) : 2469 - 2477
  • [5] Uncovering Novel Biomarkers for Rheumatoid Arthritis from Feature Selection and Machine Learning Approaches on Synovium and Blood Gene Expression Data
    Rychkov, Dmitry
    Neely, Jessica
    Sirota, Marina
    ARTHRITIS & RHEUMATOLOGY, 2020, 72
  • [6] COMBINATION OF PERIPHERAL BLOOD GENE EXPRESSION PROFILES AND CLINICAL PARAMETERS PREDICTS RESPONSE TO TOCILIZUMAB TREATMENT IN RHEUMATOID ARTHRITIS
    Mesko, Bertalan
    Poliska, Szilard
    Szamosi, Szilvia
    Szekanecz, Zoltan
    Podani, Janos
    Nagy, Laszlo
    ANNALS OF THE RHEUMATIC DISEASES, 2011, 70
  • [7] PREDICTION OF TREATMENT RESPONSE OF TOCILIZUMAB FOR RHEUMATOID ARTHRITIS WITH COMPREHENSIVE GENE EXPRESSION ANALYSIS IN PERIPHERAL BLOOD MONONUCLEAR CELLS
    Sanayama, Y.
    Ikeda, K.
    Kagami, S.
    Furuta, S.
    Kashiwakuma, D.
    Matsuura, I.
    Yamagata, M.
    Iwamoto, I.
    Umibe, T.
    Matsumura, R.
    Sugiyama, T.
    Sueishi, M.
    Nawata, Y.
    Hiraguri, M.
    Nonaka, K.
    Ohara, O.
    Nakajima, H.
    ANNALS OF THE RHEUMATIC DISEASES, 2013, 71 : 384 - 384
  • [8] Developing Machine Learning based Predictive Models for Smart Policing
    Elluri, Lavanya
    Mandalapu, Varun
    Roy, Nirmalya
    2019 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2019), 2019, : 198 - 204
  • [9] CLINICAL AND SEROLOGICAL RESPONSE TO TOCILIZUMAB IN PATIENTS WITH RHEUMATOID ARTHRITIS
    Casu, C.
    Bruschi, E.
    Alpini, C.
    Marceglia, S.
    Giacomelli, L.
    Epis, O.
    ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 : 880 - 880
  • [10] Gene expression profiling in the synovium identifies a predictive signature of absence of response to adalimumab therapy in rheumatoid arthritis
    Badot, Valerie
    Galant, Christine
    Toukap, Adrien Nzeusseu
    Theate, Ivan
    Maudoux, Anne-Lise
    Van den Eynde, Benoit J.
    Durez, Patrick
    Houssiau, Frederic A.
    Lauwerys, Bernard R.
    ARTHRITIS RESEARCH & THERAPY, 2009, 11 (02)