Quantitative muscle MRI combined with AI-based segmentation as a follow-up biomarker for ATTRv patients: A longitudinal pilot study

被引:0
|
作者
Fortanier, Etienne [1 ]
Michel, Constance P. [2 ]
Hostin, Marc Adrien [2 ,3 ]
Delmont, Emilien [1 ,4 ]
Verschueren, Annie [1 ]
Guye, Maxime [2 ]
Bellemare, Marc-Emmanuel [3 ]
Bendahan, David [2 ]
Attarian, Shahram [1 ,5 ]
机构
[1] Aix Marseille Univ, La Timone Univ Hosp, Reference Ctr Neuromuscular Dis & ALS, 264 rue St Pierre, F-13385 Marseille, France
[2] Aix Marseille Univ, Ctr Magnet Resonance Biol & Med, UMR CNRS 7339, Marseille, France
[3] Aix Marseille Univ, CNRS, LIS, Marseille, France
[4] Aix Marseille Univ, Med Fac, UMR 7286, Marseille, France
[5] Aix Marseille Univ, INSERM, GMGF, Marseille, France
关键词
amyloid; automated; biomarkers; fat fraction; imaging; longitudinal; MRI; neuropathy; quantitative;
D O I
10.1111/ene.16574
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and ObjectivesIntramuscular fat fraction (FF), assessed using quantitative MRI (qMRI), has emerged as a promising biomarker for hereditary transthyretin amyloidosis (ATTRv) patients. Currently, the main drawbacks to its use in future therapeutic trials are its sensitivity to change over a short period of time and the time-consuming manual segmentation step to extract quantitative data. This pilot study aimed to demonstrate the suitability of an Artificial Intelligence-based (AI) segmentation technique to assess disease progression in a real-life cohort of ATTRv patients over 1 year.MethodsFifteen ATTRv patients were included in this monocentric, observational, prospective study. FF, magnetization transfer ratio (MTR), and quantitative T2 were extracted from patients' lower limb qMRI at two time points, 1 year apart, at thigh and leg levels. qMRI parameters were correlated with clinical and electrophysiological parameters assessed at the same time.ResultsGlobal FF at leg level significantly progressed over 1 year: +1.28 +/- 2.62% (p = 0.017). At thigh level, no significant change in global FF, MTR, or T2 was measured. The leg FF was strongly correlated with the main clinical and electrophysiological scores.ConclusionAI-based CNN network segmentation combined with qMRI can be used to obtain quantitative metrics for longitudinal studies in ATTRv patients. Global FF at the leg level seems to be the most sensitive MRI biomarker to track disease progression in a 1-year period. Larger studies with treatment-specific groups will now be necessary to determine the place of qMRI markers compared to the current clinical and electrophysiological scores.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantitative muscle MRI in Pompe disease: A 4 years follow-up study
    Diaz-Manera, Jordi
    Nunez-Peralta, Claudia
    Segovia, Sonia
    Belmonte, Izaskun
    Pedrosa, Irene
    Montiel, Elena
    Alonso-Jimenez, Alicia
    Alonso-Perez, JOrge
    Llauger, Jaume
    Carrasco-Rozas, Ana
    Fernandez-Simon, Esther
    Suarez-Calvet, Xavier
    Gallardo, Eduard
    Illa, Isabel
    MOLECULAR GENETICS AND METABOLISM, 2019, 126 (02) : S48 - S49
  • [2] Quantitative muscle MRI to follow up late onset Pompe patients: a prospective study
    Sebastian Figueroa-Bonaparte
    Jaume Llauger
    Sonia Segovia
    Izaskun Belmonte
    Irene Pedrosa
    Elena Montiel
    Paula Montesinos
    Javier Sánchez-González
    Alicia Alonso-Jiménez
    Eduard Gallardo
    Isabel Illa
    Jordi Díaz-Manera
    Scientific Reports, 8
  • [3] Quantitative muscle MRI to follow up late onset Pompe patients: a prospective study
    Figueroa-Bonaparte, Sebastian
    Llauger, Jaume
    Segovia, Sonia
    Belmonte, Izaskun
    Pedrosa, Irene
    Montiel, Elena
    Montesinos, Paula
    Sanchez-Gonzalez, Javier
    Alonso-Jimenez, Alicia
    Gallardo, Eduard
    Illa, Isabel
    Diaz-Manera, Jordi
    SCIENTIFIC REPORTS, 2018, 8
  • [4] Muscle MRI as biomarker of disease progression in Becker muscular dystrophy: a 2 year follow-up study
    van de Velde, N.
    Hooijmans, M.
    Koeks, Z.
    Alleman, I.
    Veeger, T.
    Sardjoe-Mishre, A.
    van Zwet, E.
    Verschuuren, J.
    Niks, E.
    Kan, H.
    NEUROMUSCULAR DISORDERS, 2020, 30 : S95 - S95
  • [5] An AI-Based Tool for Improved Follow-up Assessment of Brain Metastases after Radiotherapy
    Kumar, Y.
    Fiveash, J. B.
    Chang, H. H. R.
    Katherine, H. A.
    Popple, R. A.
    Cardenas, C. E.
    MEDICAL PHYSICS, 2024, 51 (10) : 7650 - 7650
  • [6] Longitudinal MRI follow-up of spinal cord lesions in NMO patients
    Vercruysse, O.
    Zephir, H.
    Outteryck, O.
    Ferriby, D.
    Barbieux, D.
    Marcel, M.
    Chatelet, P.
    Lacour, A.
    Vermersch, P.
    MULTIPLE SCLEROSIS, 2009, 15 (09): : S205 - S206
  • [7] Acromegalic patients lost to follow-up: a pilot study
    Leandro Kasuki
    Nelma Verônica Marques
    Maria José Braga La Nuez
    Vera Lucia Gomes Leal
    Renata N. Chinen
    Mônica R. Gadelha
    Pituitary, 2013, 16 : 245 - 250
  • [8] Acromegalic patients lost to follow-up: a pilot study
    Kasuki, Leandro
    Marques, Nelma Veronica
    Braga La Nuez, Maria Jose
    Gomes Leal, Vera Lucia
    Chinen, Renata N.
    Gadelha, Monica R.
    PITUITARY, 2013, 16 (02) : 245 - 250
  • [9] AI-based MRI auto-segmentation of brain tumor in rodents, a multicenter study
    Wang, Shuncong
    Pang, Xin
    de Keyzer, Frederik
    Feng, Yuanbo
    Swinnen, Johan V. V.
    Yu, Jie
    Ni, Yicheng
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2023, 11 (01)
  • [10] MRI volumetric follow-up study of schizophrenic patients
    Honeder, M
    Whitworth, AB
    Kemmler, G
    Kremser, C
    Felber, S
    Wechdorn, H
    Hausmann, A
    Wanko, C
    Stuppäck, CH
    Fleischhacker, WW
    SCHIZOPHRENIA RESEARCH, 1998, 29 (1-2) : 77 - 77