Modular invariance as completeness

被引:1
|
作者
Benedetti, Valentin [1 ]
Casini, Horacio [1 ]
Kawahigashi, Yasuyuki [2 ]
Longo, Roberto [3 ]
Magan, Javier M. [1 ]
机构
[1] Inst Balseiro, Ctr Atom Bariloche, 8400 SC Bariloche, RA-8400 Rio Negro, Argentina
[2] Univ Tokyo Komaba, Dept Math Sci, Tokyo 1538914, Japan
[3] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
基金
日本科学技术振兴机构;
关键词
BRAID GROUP STATISTICS; LOCAL CONFORMAL NETS; SUBFACTORS; INDEX; OBSERVABLES; CLASSIFICATION; DUALITY; STRINGS; ENTROPY; SECTORS;
D O I
10.1103/PhysRevD.110.125004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review the physical meaning of modular invariance for unitary conformal quantum field theories in d = 2. For quantum field theory models, while T invariance is necessary for locality, S invariance is not mandatory. S invariance is a form of completeness of the theory that has a precise meaning as Haag duality for arbitrary multi-interval regions. We present a mathematical proof as well as derive this result from a physical standpoint using Renyi entropies and the replica trick. For rational conformal field theories (CFTs), the failure of modular invariance or Haag duality can be measured by an index, related to the quantum dimensions of the model. We show how to compute this index from the modular transformation matrices. The index also appears in a limit of the Renyi mutual information. Cases of infinite index are briefly discussed. Part of the argument can be extended to higher dimensions, where the lack of completeness can also be diagnosed using the CFT data through the thermal partition function and measured by an index.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Exhaustivity, completeness and almost invariance
    Montanero, J
    Nogales, A
    Oyola, JA
    Pérez, P
    TEST, 2002, 11 (02) : 405 - 411
  • [2] Exhaustivity, completeness and almost invariance
    J. Montanero
    A. Nogales
    J. A. Oyola
    P. Pérez
    Test, 2002, 11 : 405 - 411
  • [3] Modular invariance and the odderon
    Janik, R
    PHYSICS LETTERS B, 1996, 371 (3-4) : 293 - 297
  • [4] A PROOF OF MODULAR INVARIANCE
    NAHM, W
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (16): : 2837 - 2845
  • [5] COMPLETENESS, INVARIANCE AND LAMBDA-DEFINABILITY
    STATMAN, R
    JOURNAL OF SYMBOLIC LOGIC, 1982, 47 (01) : 17 - 26
  • [6] ON THE COMPLETENESS OF MODULAR PROOF SYSTEMS
    RAMESH, S
    INFORMATION PROCESSING LETTERS, 1990, 36 (04) : 195 - 201
  • [7] COMPLETENESS OF BORN-HUANG INVARIANCE CONDITIONS
    SARKAR, SK
    SENGUPTA, S
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE-PART A, 1977, 51 (04): : 273 - 277
  • [8] ON MODULAR INVARIANCE AND RIGIDITY THEOREMS
    LIU, KF
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1995, 41 (02) : 343 - 396
  • [9] MODULAR INVARIANCE AND NONRENORMALIZABLE INTERACTIONS
    KALARA, S
    LOPEZ, JL
    NANOPOULOS, DV
    PHYSICS LETTERS B, 1992, 287 (1-3) : 82 - 88
  • [10] MODULAR INVARIANCE IN STRING THEORY
    ODINTSOV, SD
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1991, 53 (03): : 529 - 531