PIXELMOD: Improving Soft Moderation of Visual Misleading Information on Twitter

被引:0
|
作者
Paudel, Pujan [1 ]
Ling, Chen [1 ]
Blackburn, Jeremy [2 ]
Stringhini, Gianluca [1 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] SUNY Binghamton, Binghamton, NY 13902 USA
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Images are a powerful and immediate vehicle to carry misleading or outright false messages, yet identifying image-based misinformation at scale poses unique challenges. In this paper, we present PIXELMOD, a system that leverages perceptual hashes, vector databases, and optical character recognition (OCR) to efficiently identify images that are candidates to receive soft moderation labels on Twitter. We show that PIXELMOD outperforms existing image similarity approaches when applied to soft moderation, with negligible performance overhead. We then test PIXELMOD on a dataset of tweets surrounding the 2020 US Presidential Election, and find that it is able to identify visually misleading images that are candidates for soft moderation with 0.99% false detection and 2.06% false negatives.
引用
收藏
页码:5125 / 5142
页数:18
相关论文
共 50 条
  • [1] LAMBRETTA: Learning to Rank for Twitter Soft Moderation
    Paudel, Pujan
    Blackburn, Jeremy
    De Cristofaro, Emiliano
    Zannettou, Savvas
    Stringhini, Gianluca
    2023 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP, 2023, : 311 - 326
  • [2] Misleading information in crises: exploring content-specific indicators for misleading information on Twitter from a user perspective
    Hartwig, Katrin
    Schmid, Stefka
    Biselli, Tom
    Pleil, Helene
    Reuter, Christian
    BEHAVIOUR & INFORMATION TECHNOLOGY, 2024,
  • [3] Topology comparison of Twitter diffusion networks effectively reveals misleading information
    Francesco Pierri
    Carlo Piccardi
    Stefano Ceri
    Scientific Reports, 10
  • [4] Topology comparison of Twitter diffusion networks effectively reveals misleading information
    Pierri, Francesco
    Piccardi, Carlo
    Ceri, Stefano
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Role of Soft Skills Moderation in Improving Quality of Hospital Care
    Azwar, Viviyanti
    KESMAS-NATIONAL PUBLIC HEALTH JOURNAL, 2013, 7 (08): : 378 - 384
  • [6] Misinformation warnings: Twitter's soft moderation effects on COVID-19 vaccine belief echoes
    Sharevski, Filipo
    Alsaadi, Raniem
    Jachim, Peter
    Pieroni, Emma
    COMPUTERS & SECURITY, 2022, 114
  • [7] Relevance-driven Clustering for Visual Information Retrieval on Twitter
    Bouadjenek, Mohamed Reda
    Sanner, Scott
    PROCEEDINGS OF THE 2019 CONFERENCE ON HUMAN INFORMATION INTERACTION AND RETRIEVAL (CHIIR'19), 2019, : 349 - 353
  • [8] Improving Network Coded Cooperation by Soft Information
    Volkhausen, Tobias
    Woldegebreal, Dereje H.
    Karl, Holger
    2009 6TH ANNUAL IEEE COMMUNICATION SOCIETY CONFERENCE ON SENSOR, MESH AND AD HOC COMMUNICATIONS AND NETWORKS WORKSHOPS, 2009, : 105 - 110
  • [9] Improving reasoning with contrastive visual information for visual question answering
    Long, Yu
    Tang, Pengjie
    Wang, Hanli
    Yu, Jian
    ELECTRONICS LETTERS, 2021, 57 (20) : 758 - 760
  • [10] CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter
    Abdelminaam, Diaa Salama
    Ismail, Fatma Helmy
    Taha, Mohamed
    Taha, Ahmed
    Houssein, Essam H.
    Nabil, Ayman
    IEEE ACCESS, 2021, 9 : 27840 - 27867