Advancements in Content-Addressable Memory (CAM) Circuits: State-of-the-Art, Applications, and Future Directions in the AI Domain

被引:0
|
作者
Molom-Ochir, Tergel [1 ]
Taylor, Brady [1 ]
Li, Hai [1 ]
Chen, Yiran [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27705 USA
基金
美国国家科学基金会;
关键词
Associative memory; Machine Learning; in-memory computing; semiconductor devices; digital circuits; analog circuits; NONVOLATILE TCAM; ERROR-DETECTION; TERNARY CAM; SEARCH-TIME; RERAM; CELL; MATCHLINE;
D O I
10.1109/TCSI.2025.3527309
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Content-Addressable Memory (CAM) circuits, distinguished by their ability to accelerate data retrieval through a direct content-matching function, are increasingly crucial in the era of AI and increasing data computation. With the rise of AI models, hardware matching and hashing capabilities become essential, underscoring the need for a comprehensive survey of this evolving technology. This survey explores various CAM types across circuit designs and technologies, highlighting contributions to fields such as Machine Learning and genomics. We review 37 CAM cell designs, focusing on emerging trends in area and energy efficiency, pivotal for next-generation computing. Furthermore, we discuss current challenges and suggest future research directions in CAM technology.
引用
收藏
页数:12
相关论文
共 24 条
  • [1] Content-Addressable Memory (CAM) and its applications
    Azgomi, S
    ELECTRONIC ENGINEERING, 1999, 71 (871): : 23 - +
  • [2] Content-addressable memory (CAM) circuits and architectures: A tutorial and survey
    Pagiamtzis, K
    Sheikholeslami, A
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (03) : 712 - 727
  • [3] Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions
    Demehri, Shadpour
    Baffour, Francis I.
    Klein, Joshua G.
    Ghotbi, Elena
    Ibad, Hamza Ahmed
    Moradi, Kamyar
    Taguchi, Katsuyuki
    Fritz, Jan
    Carrino, John A.
    Guermazi, Ali
    Fishman, Elliot K.
    Zbijewski, Wojciech B.
    RADIOLOGY, 2023, 308 (02)
  • [4] State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions
    Akbar, Siddique
    Vaimann, Toomas
    Asad, Bilal
    Kallaste, Ants
    Sardar, Muhammad Usman
    Kudelina, Karolina
    ENERGIES, 2023, 16 (17)
  • [5] Neural Enhancement in Content Delivery Systems: The State-of-the-Art and Future Directions
    Lee, Royson
    Venieris, Stylianos, I
    Lane, Nicholas D.
    PROCEEDINGS OF THE 2020 1ST WORKSHOP ON DISTRIBUTED MACHINE LEARNING (DISTRIBUTEDML '20), 2020, : 34 - 41
  • [6] Explainable AI Over the Internet of Things (IoT): Overview, State-of-the-Art and Future Directions
    Jagatheesaperumal, Senthil Kumar
    Pham, Quoc-Viet
    Ruby, Rukhsana
    Yang, Zhaohui
    Xu, Chunmei
    Zhang, Zhaoyang
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 2106 - 2136
  • [7] Material jetting for advanced applications: A state-of-the-art review, gaps and future directions
    Elkaseer, Ahmed
    Chen, Karin J.
    Janhsen, Jan C.
    Refle, Oliver
    Hagenmeyer, Veit
    Scholz, Steffen G.
    ADDITIVE MANUFACTURING, 2022, 60
  • [8] Applications of DEA and SFA in benchmarking studies in forestry: state-of-the-art and future directions
    Strange, Niels
    Bogetoft, Peter
    Aalmo, Giovanna Ottaviani
    Talbot, Bruce
    Holt, Anders Holm
    Astrup, Rasmus
    INTERNATIONAL JOURNAL OF FOREST ENGINEERING, 2021, 32 : 87 - 96
  • [9] Blockchain for Internet of Underwater Things: State-of-the-Art, Applications, Challenges, and Future Directions
    Bhattacharya, Sweta
    Victor, Nancy
    Chengoden, Rajeswari
    Ramalingam, Murugan
    Selvi, Govardanan Chemmalar
    Maddikunta, Praveen Kumar Reddy
    Donta, Praveen Kumar
    Dustdar, Schahram
    Jhaveri, Rutvij H.
    Gadekallu, Thippa Reddy
    SUSTAINABILITY, 2022, 14 (23)
  • [10] State-of-the-art review of neural network applications in pharmaceutical manufacturing: current state and future directions
    Gholipour, Elnaz
    Bastas, Ali
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (07) : 3003 - 3035