Hybridizing Machine Learning Algorithms With Numerical Models for Accurate Wind Power Forecasting

被引:0
|
作者
Abad-Santjago, Alvaro [1 ]
Pelaez-Rodriguez, C. [2 ]
Perez-Aracil, J. [2 ]
Sanz-Justo, J. [1 ]
Casanova-Mateo, C. [3 ]
Salcedo-Sanz, S. [2 ]
机构
[1] Univ Valladolid, Lab Teledetecc, Valladolid, Spain
[2] Univ Alcala, Dept Signal Proc & Commun, Alcala De Henares, Spain
[3] Univ Politecn Madrid, Dept Comp Syst Engn, Madrid, Spain
关键词
ERA5; reanalysis; hybrid approaches; machine learning; wind power forecasting; WRF and mesoscale models; WRF MODEL; SPEED PREDICTION; WEATHER RESEARCH; ENERGY; SENSITIVITY; PERFORMANCE; SIMULATION; RESOURCE; BANKS;
D O I
10.1111/exsy.13830
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An accurate prediction of wind power generation is crucial for optimizing the integration of wind energy into the power grid, ensuring energy reliability. This research focuses on enhancing the accuracy of wind power generation forecasts by combining data from mesoscale and reanalysis models with Machine Learning (ML) approaches. We utilized WRF forecast data alongside ERA5 reanalysis data to estimate wind power generation for a wind farm located at Valladolid, Spain. The study evaluated the performance of ML models based on WRF and ERA5 data individually, as well as a combined model using inputs from both datasets. The hybrid model combining WRF and ERA5 data with ML resulted in a 15% improvement in root mean square error (RMSE) and a 10% increase in R2$$ {R}<^>2 $$ compared with standalone models, providing a more reliable 1-h forecast of wind power generation. Additionally, the availability of data over time was addressed: WRF provides the advantage of projecting data into the future, whereas ERA5 offers retrospective data.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Wind Power Forecasting Using Machine Learning Algorithms
    Diop, Sambalaye
    Traore, Papa Silly
    Ndiaye, Mamadou Lamine
    PROCEEDINGS OF 2021 9TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2021, : 128 - 133
  • [2] Machine Learning for Wind Power Forecasting
    Cardoso de Figueiredo, Yann Fabricio
    Lima de Campos, Lidio Mauro
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Wind power forecasting based on time series and machine learning models
    Park, Sujin
    Lee, Jin-Young
    Kim, Sahm
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (05) : 723 - 734
  • [4] Wind Power Forecasting with Machine Learning Algorithms in Low-Cost Devices
    Buestan-Andrade, Pablo Andres
    Penacoba-Yague, Mario
    Sierra-Garcia, Jesus Enrique
    Santos, Matilde
    ELECTRONICS, 2024, 13 (08)
  • [5] Wind power forecasting based on daily wind speed data using machine learning algorithms
    Demolli, Halil
    Dokuz, Ahmet Sakir
    Ecemis, Alper
    Gokcek, Murat
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [6] Short-Term Wind Power Forecasting by Advanced Machine Learning Models
    Li, Yun-Lun
    Zhu, Zheng-An
    Chang, Yun-Kai
    Chiang, Chen-Kuo
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 412 - 415
  • [7] Ensemble Learning Models for Wind Power Forecasting
    Deon, Samara
    de Lima, Jose Donizetti
    Dranka, Geremi Gilson
    Dal Molin Ribeiro, Matheus Henrique
    Santos dos Anjos, Julio Cesar
    de Paz Santana, Juan Francisco
    Quietinho Leithardt, Valderi Reis
    NEW TRENDS IN DISRUPTIVE TECHNOLOGIES, TECH ETHICS, AND ARTIFICIAL INTELLIGENCE, DITTET 2024, 2024, 1459 : 15 - 27
  • [8] Wind power forecasting based on hourly wind speed data in South Korea using machine learning algorithms
    Kim, Jeonghyeon
    Afzal, Asif
    Kim, Hyun-Goo
    Dinh, Cong Truong
    Park, Sung Goon
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (12) : 6107 - 6113
  • [9] Wind power forecasting based on hourly wind speed data in South Korea using machine learning algorithms
    Jeonghyeon Kim
    Asif Afzal
    Hyun-Goo Kim
    Cong Truong Dinh
    Sung Goon Park
    Journal of Mechanical Science and Technology, 2022, 36 : 6107 - 6113
  • [10] Machine Learning Algorithms in Forecasting of Photovoltaic Power Generation
    Su, Di
    Batzelis, Efstratios
    Pal, Bikash
    2019 2ND INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST 2019), 2019,