Schwinger-Keldysh Path Integral Formalism for a Quenched Quantum Inverted Oscillator

被引:0
|
作者
Choudhury, Sayantan [1 ]
Dey, Suman [2 ]
Gharat, Rakshit Mandish [3 ]
Mandal, Saptarshi [4 ]
Pandey, Nilesh [1 ]
机构
[1] SGT Univ, Ctr Cosmol & Sci Popularizat CCSP, Gurugram 122505, Haryana, India
[2] Visva Bharati Univ, Dept Phys, Santini Ketan 731235, W Bengal, India
[3] Natl Inst Technol Karnataka, Dept Phys, Surathkal 575025, Karnataka, India
[4] Indian Inst Technol Kharagpur, Dept Phys, Kharagpur 721302, W Bengal, India
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 10期
关键词
quantum mechanics; out-of-equilibrium physics; statistical mechanics; condensed matter physics; non-equilibrium physics; quantum chaos; DEPENDENT HARMONIC-OSCILLATOR; DYNAMICS; RELAXATION; STATES; LIGHT;
D O I
10.3390/sym16101308
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we study the time-dependent behavior of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger-Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for an inverted oscillator system, we use the invariant operator method to obtain its eigenstate and continuous energy eigenvalues. Using the expression for the eigenstate, we further derive the most general expression for the generating function as well as the out-of-time-ordered correlators (OTOCs) for the given system using this formalism. Further, considering the time-dependent coupling and frequency of the quantum inverted oscillator characterized by quench parameters, we comment on the dynamical behavior, specifically the early, intermediate and late time-dependent features of the OTOC for the quenched quantum inverted oscillator. Next, we study a specific case, where the system of an inverted oscillator exhibits chaotic behavior by computing the quantum Lyapunov exponent from the time-dependent behavior of OTOCs in the presence of the given quench profile.
引用
收藏
页数:28
相关论文
共 45 条
  • [1] Stress tensor correlators in the Schwinger-Keldysh formalism
    Ford, LH
    Woodard, RP
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (09) : 1637 - 1645
  • [2] Revisiting the minimum length in the Schwinger-Keldysh formalism
    Casadio, Roberto
    Kuntz, Ibere
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (10):
  • [3] Schwinger-Keldysh superspace in quantum mechanics
    Geracie, Michael
    Haehl, Felix M.
    Loganayagam, R.
    Narayan, Prithvi
    Ramirez, David M.
    Rangamani, Mukund
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [4] Schwinger-Keldysh canonical formalism for electronic Raman scattering
    Su, Yuehua
    PHYSICA B-CONDENSED MATTER, 2016, 484 : 59 - 68
  • [5] Open quantum systems and Schwinger-Keldysh holograms
    Chandan Jana
    R. Loganayagam
    Mukund Rangamani
    Journal of High Energy Physics, 2020
  • [6] Open quantum systems and Schwinger-Keldysh holograms
    Jana, Chandan
    Loganayagam, R.
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)
  • [7] Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace
    Haehl, Felix M.
    Loganayagam, R.
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06):
  • [8] Schwinger-Keldysh semionic approach for quantum spin systems
    Kiselev, MN
    Oppermann, R
    PHYSICAL REVIEW LETTERS, 2000, 85 (26) : 5631 - 5634
  • [9] Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology
    Haehl, Felix M.
    Loganayagam, R.
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06):
  • [10] Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology
    Felix M. Haehl
    R. Loganayagam
    Mukund Rangamani
    Journal of High Energy Physics, 2017