Promoting Layered Oxide Cathodes Based on Structural Reconstruction for Sodium-Ion Batteries: Reversible Phase Transition, Stable Interface Regulation, and Multifunctional Intergrowth Structure

被引:0
|
作者
Liu, Xin-Yu [1 ,2 ]
Li, Shi [3 ]
Zhu, Yan-Fang [1 ,2 ]
Zhang, Xin-Yu [1 ,2 ]
Su, Yu [1 ,2 ]
Li, Meng-Ying [1 ,2 ]
Li, Hong-Wei [1 ,2 ]
Chen, Bing-Bing [1 ,2 ]
Liu, Yi-Feng [1 ,2 ]
Xiao, Yao [1 ,2 ]
机构
[1] Wenzhou Univ, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[2] Wenzhou Univ Technol Innovat Inst Carbon Neutraliz, Wenzhou Key Lab Sodium Ion Batteries, Wenzhou 325035, Peoples R China
[3] Hangzhou Hangyang Chem & Med Engn Lo Ltd, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
layered oxide cathodes; multifunctional intergrowth structure; reversible phase transitions; sodium-ion batteries; stable interface regulation; HIGH-ENERGY; HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; HIGH-CAPACITY; LONG-LIFE; REDOX CHEMISTRY; METAL OXIDES; P2-TYPE; NA0.44MNO2; STABILITY;
D O I
10.1002/adfm.202414130
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered transition-metal oxides (NaxTMO2) are one of the most promising cathode materials for sodium-ion batteries due to their high theoretical specific capacities, good conductivity, and environmental friendliness. However, several key scientific issues of NaxTMO2 cathode materials still persist in practical applications: i) complex phase transitions during the charge/discharge process owing to the slip of the transition-metal layer; ii) the tendency for the interface to react with the electrolyte, resulting in structure degradation, and iii) reactions between active materials and H2O as well as CO2 on exposure to air in the environment to form alkaline substances on the surface. To understand electrochemical storage mechanisms and solve these problems, several modification strategies of NaxTMO2 have been reported recently, including bulk doping, concentration gradient structure design, interface regulation, and intergrowth structure construction. This review focuses on reversible phase transitions, stable interface regulation, and multifunctional intergrowth structure of the NaxTMO2 material from the inside to the outside. The future research directions for NaxTMO2 are also analyzed, providing guidance for the development of commercial layered oxides for next-generation energy storage systems. This review focuses on the challenges of NaxTMO2, including irreversible phase transitions, especially at high voltage, interfacial degradation caused by adverse reactions between the electrolyte and the material, and structural breakdown on exposure to air, which can be solved through bulk doping, gradient structure designing, interface coating, interface coating combined with doping synergy, and intergrowth structure designing. image
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
    Shaohua Guo
    Qi Li
    Pan Liu
    Mingwei Chen
    Haoshen Zhou
    Nature Communications, 8
  • [2] Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
    Guo, Shaohua
    Li, Qi
    Liu, Pan
    Chen, Mingwei
    Zhou, Haoshen
    NATURE COMMUNICATIONS, 2017, 8
  • [3] Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: Reversible phase transformation, abnormal structural regulation, and stable anionic redox
    Zhang, Xin-Yu
    Hu, Hai-Yan
    Liu, Xin-Yu
    Wang, Jingqiang
    Liu, Yi-Feng
    Zhu, Yan-Fang
    Kong, Ling-Yi
    Jian, Zhuang-Chun
    Chou, Shu-Lei
    Xiao, Yao
    NANO ENERGY, 2024, 128
  • [4] Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition
    Liu, Yi-Feng
    Han, Kai
    Peng, Dan-Ni
    Kong, Ling-Yi
    Su, Yu
    Li, Hong-Wei
    Hu, Hai-Yan
    Li, Jia-Yang
    Wang, Hong-Rui
    Fu, Zhi-Qiang
    Ma, Qiang
    Zhu, Yan-Fang
    Tang, Rui-Ren
    Chou, Shu-Lei
    Xiao, Yao
    Wu, Xiong-Wei
    INFOMAT, 2023, 5 (06)
  • [5] Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance
    Wang, Peng-Fei
    You, Ya
    Yin, Ya-Xia
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2018, 8 (08)
  • [6] Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries
    Jiang, Kezhu
    Guo, Shaohua
    Pang, Wei Kong
    Zhang, Xueping
    Fang, Tiancheng
    Wang, Shao-fei
    Wang, Fangwei
    Zhang, Xiaoyu
    He, Ping
    Zhou, Haoshen
    NANO RESEARCH, 2021, 14 (11) : 4100 - 4106
  • [7] Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries
    Kezhu Jiang
    Shaohua Guo
    Wei Kong Pang
    Xueping Zhang
    Tiancheng Fang
    Shao-fei Wang
    Fangwei Wang
    Xiaoyu Zhang
    Ping He
    Haoshen Zhou
    Nano Research, 2021, 14 : 4100 - 4106
  • [8] Advances in layered transition metal oxide cathodes for sodium-ion batteries
    Gao, Hanqing
    Zeng, Jinjue
    Sun, Zhipeng
    Jiang, Xiangfen
    Wang, Xuebin
    MATERIALS TODAY ENERGY, 2024, 42
  • [9] Recent progress in layered oxide cathodes for sodium-ion batteries: stability, phase transition and solutions
    Chen, Xiaoqin
    Wang, Chenkai
    Zhao, Yu
    Wang, Yongxin
    Yin, Xiaoju
    Zhang, Naiqing
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (46) : 31797 - 31817
  • [10] Strengthening Transition Metal-Oxygen Interaction in Layered Oxide Cathodes for Stable Sodium-Ion Batteries
    Dai, Junyi
    Li, Jiahao
    Yao, Yu
    Wang, Yan-Ru
    Ma, Mingze
    Bai, Ruilin
    Zhu, Yinbo
    Rui, Xianhong
    Wu, Hengan
    Yu, Yan
    ACS NANO, 2025, 19 (11) : 11197 - 11209