Greedoids and Violator Spaces

被引:0
|
作者
Kempner, Yulia [1 ]
Levit, Vadim E. [2 ]
机构
[1] Holon Inst Technol, Dept Comp Sci, IL-5810201 Holon, Israel
[2] Ariel Univ, Dept Math, IL-40700 Ariel, Israel
关键词
violator space; linear programming; closure operator; greedoid; antimatroid; CLOSURE; ALGORITHM; PATH;
D O I
10.3390/axioms13090633
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research explores the interplay between violator spaces and greedoids-two distinct theoretical frameworks developed independently. Violator spaces were introduced as a generalization of linear programming, while greedoids were designed to characterize combinatorial structures where greedy algorithms yield optimal solutions. These frameworks have, until now, existed in isolation. This paper bridges the gap by showing that greedoids can be defined using a modified violator operator. The established connections not only deepen our understanding of these theories but also provide a new characterization of antimatroids.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Cospanning Characterizations of Violator and Co-violator Spaces
    Kempner, Yulia
    Levit, Vadim E.
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 109 - 117
  • [2] Violator spaces vs closure spaces
    Kempner, Yulia
    Levit, Vadim E.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 203 - 213
  • [3] Violator spaces:: Structure and algorithms
    Gaertner, B.
    Matousek, J.
    Ruest, L.
    Skovron, P.
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (11) : 2124 - 2141
  • [4] Violator spaces:: Structure and algorithms
    Gaertner, Bernd
    Matousek, Jiri
    Ruest, Leo
    Skovron, Petr
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 387 - 398
  • [5] Clarkson's algorithm for violator spaces
    Brise, Yves
    Gaertner, Bernd
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (02): : 70 - 81
  • [6] Random sampling in computational algebra: Helly numbers and violator spaces
    De Loera, Jesus A.
    Petrovic, Sonja
    Stasi, Despina
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 77 : 1 - 15
  • [7] Transversal greedoids
    Brooksbank, PA
    EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) : 137 - 141
  • [8] POLYMATROID GREEDOIDS
    KORTE, B
    LOVASZ, L
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) : 41 - 72
  • [9] HOMOTOPY PROPERTIES OF GREEDOIDS
    BJORNER, A
    KORTE, B
    LOVASZ, L
    ADVANCES IN APPLIED MATHEMATICS, 1985, 6 (04) : 447 - 494
  • [10] Oriented Interval Greedoids
    Franco Saliola
    Hugh Thomas
    Discrete & Computational Geometry, 2012, 47 : 64 - 105